These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31238583)

  • 1. Trimodal Waveguide Demonstration and Its Implementation as a High Order Mode Interferometer for Sensing Application.
    Ramirez JC; H Gabrielli L; Lechuga LM; Hernandez-Figueroa HE
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31238583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Grating-Assisted Trimodal Interferometer Biosensors Based on a Polymer Platform.
    Liang Y; Zhao M; Wu Z; Morthier G
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29748499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of a low-cost trimodal polymer waveguide for interferometric optical biosensors.
    Ramirez JC; Lechuga LM; Gabrielli LH; Hernandez-Figueroa HE
    Opt Express; 2015 May; 23(9):11985-94. PubMed ID: 25969288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated planar optical waveguide interferometer biosensors: a comparative review.
    Kozma P; Kehl F; Ehrentreich-Förster E; Stamm C; Bier FF
    Biosens Bioelectron; 2014 Aug; 58():287-307. PubMed ID: 24658026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Order Multimode Waveguide Interferometer for Optical Biosensing Applications.
    Isayama YH; Hernández-Figueroa HE
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34066692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a compact and highly sensitive modal interferometer using hybrid modes of a dielectric loaded plasmonic waveguide.
    Dwivedi R; Kumar A
    Appl Opt; 2022 Aug; 61(24):7197-7205. PubMed ID: 36256340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrahigh-sensitive temperature sensor based on modal interference in a metal-under-clad ridge waveguide with a polymer upper cladding.
    Dwivedi R; Kumar A
    Appl Opt; 2017 Jun; 56(16):4685-4689. PubMed ID: 29047601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated Photonic Nanofences: Combining Subwavelength Waveguides with an Enhanced Evanescent Field for Sensing Applications.
    Cadarso VJ; Llobera A; Puyol M; Schift H
    ACS Nano; 2016 Jan; 10(1):778-85. PubMed ID: 26615837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtosecond laser inscribed straight waveguide in no-core fiber for in-line Mach-Zehnder interferometer construction.
    Li WW; Wang DN
    Opt Lett; 2018 Jul; 43(14):3405-3408. PubMed ID: 30004517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and fabrication of a heterostructured cladding solid-core photonic bandgap fiber for construction of Mach-Zehnder interferometer and high sensitive curvature sensor.
    Hu X; Peng J; Yang L; Li J; Li H; Dai N
    Opt Express; 2018 Mar; 26(6):7005-7012. PubMed ID: 29609385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer Waveguide Sensor Based on Evanescent Bragg Grating for Lab-on-a-Chip Applications.
    Zhang Z; Abdalwareth A; Flachenecker G; Angelmahr M; Schade W
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated Young interferometer sensor with a channel-planar composite waveguide sensing arm.
    Qi ZM; Zhao S; Chen F; Xia S
    Opt Lett; 2009 Jul; 34(14):2213-5. PubMed ID: 19823552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermodal interferometer for strain and temperature sensing fabricated in birefringent boron doped microstructured fiber.
    Statkiewicz-Barabach G; Carvalho JP; Frazão O; Olszewski J; Mergo P; Santos JL; Urbanczyk W
    Appl Opt; 2011 Jul; 50(21):3742-9. PubMed ID: 21772355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Coupling in Atomic Waveguide for Vertically Integrated Photonics.
    Wang Y; Wang J; Tian R; Zheng J; Shao L; Liu B; Wang F; Gan X; Shi Y; Wang X
    Research (Wash D C); 2024; 7():0329. PubMed ID: 38476475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of a refractometric sensor based on an optical micro-fiber three-beam interferometer.
    Han C; Ding H; Lv F
    Sci Rep; 2014 Dec; 4():7504. PubMed ID: 25511687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Sensitive Liquid M-Z Waveguide Sensor Based on Polymer Suspended Slot Waveguide Structure.
    Han J; Wu X; Ge X; Xie Y; Song G; Liu L; Yi Y
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-sensitive polymeric waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer.
    Niu D; Wang L; Xu Q; Jiang M; Wang X; Sun X; Wang F; Zhang D
    Appl Opt; 2019 Feb; 58(5):1276-1280. PubMed ID: 30873998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-arm double-mode double-order planar waveguide interferometric sensor.
    Sarkisov SS; Diggs DE; Adamovsky G; Curley MJ
    Appl Opt; 2001 Jan; 40(3):349-59. PubMed ID: 18357008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Analysis of a Slot Photonic Crystal Waveguide for Highly Sensitive Evanescent Field Absorption Sensing in Fluids.
    Jannesari R; Pühringer G; Grille T; Jakoby B
    Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32824221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced fabrication of polymer waveguide interferometric sensor utilizing interconnected holey fibers.
    Shao Z; Liu J; Zhou K; Zhang Z; Liang R; Qiao X
    Opt Express; 2024 May; 32(11):18858-18870. PubMed ID: 38859033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.