BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 31238595)

  • 1. Modulating the Precursor and Terpene Synthase Supply for the Whole-Cell Biocatalytic Production of the Sesquiterpene (+)-Zizaene in a Pathway Engineered
    Aguilar F; Scheper T; Beutel S
    Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31238595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Production and In Situ Recovery of Sesquiterpene (+)-Zizaene from Metabolically-Engineered
    Aguilar F; Scheper T; Beutel S
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31540161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SUMO-fusion, purification, and characterization of a (+)-zizaene synthase from Chrysopogon zizanioides.
    Hartwig S; Frister T; Alemdar S; Li Z; Scheper T; Beutel S
    Biochem Biophys Res Commun; 2015 Mar; 458(4):883-9. PubMed ID: 25701786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of the precursor supply for high-level production of longifolene by metabolically engineered Escherichia coli.
    Cao Y; Zhang R; Liu W; Zhao G; Niu W; Guo J; Xian M; Liu H
    Sci Rep; 2019 Jan; 9(1):95. PubMed ID: 30643175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Escherichia coli for production of valerenadiene.
    Nybo SE; Saunders J; McCormick SP
    J Biotechnol; 2017 Nov; 262():60-66. PubMed ID: 28988031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel approaches and achievements in biosynthesis of functional isoprenoids in Escherichia coli.
    Harada H; Misawa N
    Appl Microbiol Biotechnol; 2009 Oct; 84(6):1021-31. PubMed ID: 19672590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sesquiterpene Synthase Engineering and Targeted Engineering of α-Santalene Overproduction in
    Zhang J; Wang X; Zhang X; Zhang Y; Wang F; Li X
    J Agric Food Chem; 2022 May; 70(17):5377-5385. PubMed ID: 35465671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Biosynthesis of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli through introducing mevalonate pathway].
    Wu T; Wu S; Yin Q; Dai H; Li S; Dong F; Chen B; Fang H
    Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1040-8. PubMed ID: 22016988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-Cell Production of Patchouli Oil Sesquiterpenes in
    Aguilar F; Ekramzadeh K; Scheper T; Beutel S
    ACS Omega; 2020 Dec; 5(50):32436-32446. PubMed ID: 33376881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of the Inaccessible Sesquiterpene (-)-5-Epieremophilene by Metabolically Engineered Escherichia coli.
    Luo LQ; Chen YG; Li DS; Liu Y; Li SH
    Chem Biodivers; 2020 Jul; 17(7):e2000219. PubMed ID: 32352210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Escherichia coli for α-farnesene production.
    Wang C; Yoon SH; Jang HJ; Chung YR; Kim JY; Choi ES; Kim SW
    Metab Eng; 2011 Nov; 13(6):648-55. PubMed ID: 21907299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae.
    Peng B; Plan MR; Chrysanthopoulos P; Hodson MP; Nielsen LK; Vickers CE
    Metab Eng; 2017 Jan; 39():209-219. PubMed ID: 27939849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed.
    Tippmann S; Scalcinati G; Siewers V; Nielsen J
    Biotechnol Bioeng; 2016 Jan; 113(1):72-81. PubMed ID: 26108688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High level production of amorphadiene using Bacillus subtilis as an optimized terpenoid cell factory.
    Pramastya H; Xue D; Abdallah II; Setroikromo R; Quax WJ
    N Biotechnol; 2021 Jan; 60():159-167. PubMed ID: 33148534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologous biosynthesis of costunolide in Escherichia coli and yield improvement.
    Yin H; Zhuang YB; Li EE; Bi HP; Zhou W; Liu T
    Biotechnol Lett; 2015 Jun; 37(6):1249-55. PubMed ID: 25700819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production.
    Kim SK; Han GH; Seong W; Kim H; Kim SW; Lee DH; Lee SG
    Metab Eng; 2016 Nov; 38():228-240. PubMed ID: 27569599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of sesterterpene ophiobolin by a bifunctional terpene synthase in Escherichia coli.
    Yuan W; Lv S; Chen L; Zhao Y; Deng Z; Hong K
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8785-8797. PubMed ID: 31515597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Production of (+)-Aristolochene and (+)-Bicyclogermacrene in
    Huang ZY; Wu QY; Li CX; Yu HL; Xu JH
    J Agric Food Chem; 2022 May; 70(19):5860-5868. PubMed ID: 35506591
    [No Abstract]   [Full Text] [Related]  

  • 19. Targeted proteomics for metabolic pathway optimization: application to terpene production.
    Redding-Johanson AM; Batth TS; Chan R; Krupa R; Szmidt HL; Adams PD; Keasling JD; Lee TS; Mukhopadhyay A; Petzold CJ
    Metab Eng; 2011 Mar; 13(2):194-203. PubMed ID: 21215324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of Patchoulol Production in
    Zhou L; Wang Y; Han L; Wang Q; Liu H; Cheng P; Li R; Guo X; Zhou Z
    J Agric Food Chem; 2021 Jul; 69(27):7572-7580. PubMed ID: 34196182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.