BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 31238823)

  • 1. Structure of F
    Petri J; Nakatani Y; Montgomery MG; Ferguson SA; Aragão D; Leslie AGW; Heikal A; Walker JE; Cook GM
    Open Biol; 2019 Jun; 9(6):190066. PubMed ID: 31238823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum.
    Ferguson SA; Cook GM; Montgomery MG; Leslie AG; Walker JE
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10860-5. PubMed ID: 27621435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of the catalytic domain of the ATP synthase from
    Zhang AT; Montgomery MG; Leslie AGW; Cook GM; Walker JE
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4206-4211. PubMed ID: 30683723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic assessment of mycobacterial F
    Wong CF; Lau AM; Harikishore A; Saw WG; Shin J; Ragunathan P; Bhushan S; Ngan SC; Sze SK; Bates RW; Dick T; Grüber G
    FEBS J; 2021 Feb; 288(3):818-836. PubMed ID: 32525613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9 A resolution.
    Bowler MW; Montgomery MG; Leslie AG; Walker JE
    J Biol Chem; 2007 May; 282(19):14238-42. PubMed ID: 17350959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of bovine F1-ATPase inhibited by ADP and beryllium fluoride.
    Kagawa R; Montgomery MG; Braig K; Leslie AG; Walker JE
    EMBO J; 2004 Jul; 23(14):2734-44. PubMed ID: 15229653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. F1-ATPase of Escherichia coli: the ε- inhibited state forms after ATP hydrolysis, is distinct from the ADP-inhibited state, and responds dynamically to catalytic site ligands.
    Shah NB; Hutcheon ML; Haarer BK; Duncan TM
    J Biol Chem; 2013 Mar; 288(13):9383-95. PubMed ID: 23400782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific placement of tryptophan in the catalytic sites of Escherichia coli F1-ATPase provides a direct probe of nucleotide binding: maximal ATP hydrolysis occurs with three sites occupied.
    Weber J; Wilke-Mounts S; Lee RS; Grell E; Senior AE
    J Biol Chem; 1993 Sep; 268(27):20126-33. PubMed ID: 8376371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of bovine mitochondrial F(1)-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis.
    Menz RI; Walker JE; Leslie AG
    Cell; 2001 Aug; 106(3):331-41. PubMed ID: 11509182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural evidence of a new catalytic intermediate in the pathway of ATP hydrolysis by F1-ATPase from bovine heart mitochondria.
    Rees DM; Montgomery MG; Leslie AG; Walker JE
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11139-43. PubMed ID: 22733764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 3 × 120° rotary mechanism of
    Zarco-Zavala M; Watanabe R; McMillan DGG; Suzuki T; Ueno H; Mendoza-Hoffmann F; García-Trejo JJ; Noji H
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29647-29657. PubMed ID: 33168750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of bovine mitochondrial F(1)-ATPase inhibited by Mg(2+) ADP and aluminium fluoride.
    Braig K; Menz RI; Montgomery MG; Leslie AG; Walker JE
    Structure; 2000 Jun; 8(6):567-73. PubMed ID: 10873854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox regulation of rotation of the cyanobacterial F1-ATPase containing thiol regulation switch.
    Kim Y; Konno H; Sugano Y; Hisabori T
    J Biol Chem; 2011 Mar; 286(11):9071-8. PubMed ID: 21193405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATPase kinetics for wild-type Saccharomyces cerevisiae F1-ATPase and F1-ATPase with the beta-subunit Thr197-->Ser mutation.
    Mueller DM; Indyk V; McGill L
    Eur J Biochem; 1994 Jun; 222(3):991-9. PubMed ID: 8026510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How release of phosphate from mammalian F1-ATPase generates a rotary substep.
    Bason JV; Montgomery MG; Leslie AG; Walker JE
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6009-14. PubMed ID: 25918412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bovine F1-ATPase covalently inhibited with 4-chloro-7-nitrobenzofurazan: the structure provides further support for a rotary catalytic mechanism.
    Orriss GL; Leslie AG; Braig K; Walker JE
    Structure; 1998 Jul; 6(7):831-7. PubMed ID: 9687365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acceleration of unisite catalysis of mitochondrial F1-adenosinetriphosphatase by ATP, ADP and pyrophosphate--hydrolysis and release of the previously bound [gamma-32P]ATP.
    García JJ; Gómez-Puyou A; Maldonado E; Tuena De Gómez-Puyou M
    Eur J Biochem; 1997 Oct; 249(2):622-9. PubMed ID: 9370375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state rate of F1-ATPase turnover during ATP hydrolysis by the single catalytic site.
    Milgrom YaM ; Murataliev MB
    FEBS Lett; 1987 Feb; 212(1):63-7. PubMed ID: 2879744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides.
    Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E
    Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the partial reactions of rotational catalysis in F1-ATPase.
    Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK
    Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.