BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31238884)

  • 1. Integration of CLIP experiments of RNA-binding proteins: a novel approach to predict context-dependent splicing factors from transcriptomic data.
    Carazo F; Gimeno M; Ferrer-Bonsoms JA; Rubio A
    BMC Genomics; 2019 Jun; 20(1):521. PubMed ID: 31238884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CLIPdb: a CLIP-seq database for protein-RNA interactions.
    Yang YC; Di C; Hu B; Zhou M; Liu Y; Song N; Li Y; Umetsu J; Lu ZJ
    BMC Genomics; 2015 Feb; 16(1):51. PubMed ID: 25652745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seten: a tool for systematic identification and comparison of processes, phenotypes, and diseases associated with RNA-binding proteins from condition-specific CLIP-seq profiles.
    Budak G; Srivastava R; Janga SC
    RNA; 2017 Jun; 23(6):836-846. PubMed ID: 28336542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data.
    Li S; Dong F; Wu Y; Zhang S; Zhang C; Liu X; Jiang T; Zeng J
    Nucleic Acids Res; 2017 Aug; 45(14):e129. PubMed ID: 28575488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of Allele-Specific Protein-RNA Interactions in Human Transcriptomes.
    Bahrami-Samani E; Xing Y
    Am J Hum Genet; 2019 Mar; 104(3):492-502. PubMed ID: 30827501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale Profiling of RBP-circRNA Interactions from Public CLIP-Seq Datasets.
    Zhang M; Wang T; Xiao G; Xie Y
    Genes (Basel); 2020 Jan; 11(1):. PubMed ID: 31947823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global regulation of alternative RNA splicing by the SR-rich protein RBM39.
    Mai S; Qu X; Li P; Ma Q; Cao C; Liu X
    Biochim Biophys Acta; 2016 Aug; 1859(8):1014-24. PubMed ID: 27354116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. rMAPS: RNA map analysis and plotting server for alternative exon regulation.
    Park JW; Jung S; Rouchka EC; Tseng YT; Xing Y
    Nucleic Acids Res; 2016 Jul; 44(W1):W333-8. PubMed ID: 27174931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Analysis of RNA-Protein Interactions via Deep Sequencing.
    Li L; Förstner KU; Chao Y
    Methods Mol Biol; 2018; 1751():171-182. PubMed ID: 29508297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the Transcriptome-Wide Landscape of RBP Binding Sites Using gPAR-CLIP-seq: Bioinformatic Analysis.
    Freeberg MA; Kim JK
    Methods Mol Biol; 2016; 1361():91-104. PubMed ID: 26483018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins.
    Van Nostrand EL; Pratt GA; Yee BA; Wheeler EC; Blue SM; Mueller J; Park SS; Garcia KE; Gelboin-Burkhart C; Nguyen TB; Rabano I; Stanton R; Sundararaman B; Wang R; Fu XD; Graveley BR; Yeo GW
    Genome Biol; 2020 Apr; 21(1):90. PubMed ID: 32252787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome-wide Identification of RNA-binding Protein Binding Sites Using Photoactivatable-Ribonucleoside-Enhanced Crosslinking Immunoprecipitation (PAR-CLIP).
    Maatz H; Kolinski M; Hubner N; Landthaler M
    Curr Protoc Mol Biol; 2017 Apr; 118():27.6.1-27.6.19. PubMed ID: 28369676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cCLIP-Seq: Retrieval of Chimeric Reads from HITS-CLIP (CLIP-Seq) Libraries.
    Alexiou P; Maragkakis M; Mourelatos Z; Vourekas A
    Methods Mol Biol; 2018; 1680():87-100. PubMed ID: 29030843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CLIP-seq analysis of multi-mapped reads discovers novel functional RNA regulatory sites in the human transcriptome.
    Zhang Z; Xing Y
    Nucleic Acids Res; 2017 Sep; 45(16):9260-9271. PubMed ID: 28934506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. omniCLIP: probabilistic identification of protein-RNA interactions from CLIP-seq data.
    Drewe-Boss P; Wessels HH; Ohler U
    Genome Biol; 2018 Nov; 19(1):183. PubMed ID: 30384847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Pipeline for PAR-CLIP Data Analysis.
    Jens M
    Methods Mol Biol; 2016; 1358():197-207. PubMed ID: 26463385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iCLIP--transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution.
    Konig J; Zarnack K; Rot G; Curk T; Kayikci M; Zupan B; Turner DJ; Luscombe NM; Ule J
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21559008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TF-RBP-AS Triplet Analysis Reveals the Mechanisms of Aberrant Alternative Splicing Events in Kidney Cancer: Implications for Their Possible Clinical Use as Prognostic and Therapeutic Biomarkers.
    He M; Hu F
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational analysis of CLIP-seq data.
    Uhl M; Houwaart T; Corrado G; Wright PR; Backofen R
    Methods; 2017 Apr; 118-119():60-72. PubMed ID: 28254606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Practical considerations on performing and analyzing CLIP-seq experiments to identify transcriptomic-wide RNA-protein interactions.
    Chen X; Castro SA; Liu Q; Hu W; Zhang S
    Methods; 2019 Feb; 155():49-57. PubMed ID: 30527764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.