BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 31238957)

  • 21. Negative elongation factor is required for the maintenance of proviral latency but does not induce promoter-proximal pausing of RNA polymerase II on the HIV long terminal repeat.
    Jadlowsky JK; Wong JY; Graham AC; Dobrowolski C; Devor RL; Adams MD; Fujinaga K; Karn J
    Mol Cell Biol; 2014 Jun; 34(11):1911-28. PubMed ID: 24636995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The AFF4 scaffold binds human P-TEFb adjacent to HIV Tat.
    Schulze-Gahmen U; Upton H; Birnberg A; Bao K; Chou S; Krogan NJ; Zhou Q; Alber T
    Elife; 2013 Mar; 2():e00327. PubMed ID: 23471103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Molecular Basis for Human Immunodeficiency Virus Latency.
    Mbonye U; Karn J
    Annu Rev Virol; 2017 Sep; 4(1):261-285. PubMed ID: 28715973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A New Quinoline BRD4 Inhibitor Targets a Distinct Latent HIV-1 Reservoir for Reactivation from Other "Shock" Drugs.
    Abner E; Stoszko M; Zeng L; Chen HC; Izquierdo-Bouldstridge A; Konuma T; Zorita E; Fanunza E; Zhang Q; Mahmoudi T; Zhou MM; Filion GJ; Jordan A
    J Virol; 2018 May; 92(10):. PubMed ID: 29343578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription.
    He N; Liu M; Hsu J; Xue Y; Chou S; Burlingame A; Krogan NJ; Alber T; Zhou Q
    Mol Cell; 2010 May; 38(3):428-38. PubMed ID: 20471948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene target specificity of the Super Elongation Complex (SEC) family: how HIV-1 Tat employs selected SEC members to activate viral transcription.
    Lu H; Li Z; Zhang W; Schulze-Gahmen U; Xue Y; Zhou Q
    Nucleic Acids Res; 2015 Jul; 43(12):5868-79. PubMed ID: 26007649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4.
    Gu J; Babayeva ND; Suwa Y; Baranovskiy AG; Price DH; Tahirov TH
    Cell Cycle; 2014; 13(11):1788-97. PubMed ID: 24727379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Short Communication: The Broad-Spectrum Histone Deacetylase Inhibitors Vorinostat and Panobinostat Activate Latent HIV in CD4(+) T Cells In Part Through Phosphorylation of the T-Loop of the CDK9 Subunit of P-TEFb.
    Jamaluddin MS; Hu PW; Jan Y; Siwak EB; Rice AP
    AIDS Res Hum Retroviruses; 2016 Feb; 32(2):169-73. PubMed ID: 26727990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cleavage and Polyadenylation Specificity Factor 6 Is Required for Efficient HIV-1 Latency Reversal.
    Zheng Y; Schubert HL; Singh PK; Martins LJ; Engelman AN; D'Orso I; Hill CP; Planelles V
    mBio; 2021 Jun; 12(3):e0109821. PubMed ID: 34154414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TRIM28 promotes HIV-1 latency by SUMOylating CDK9 and inhibiting P-TEFb.
    Ma X; Yang T; Luo Y; Wu L; Jiang Y; Song Z; Pan T; Liu B; Liu G; Liu J; Yu F; He Z; Zhang W; Yang J; Liang L; Guan Y; Zhang X; Li L; Cai W; Tang X; Gao S; Deng K; Zhang H
    Elife; 2019 Jan; 8():. PubMed ID: 30652970
    [TBL] [Abstract][Full Text] [Related]  

  • 31. T-cell receptor signaling enhances transcriptional elongation from latent HIV proviruses by activating P-TEFb through an ERK-dependent pathway.
    Kim YK; Mbonye U; Hokello J; Karn J
    J Mol Biol; 2011 Jul; 410(5):896-916. PubMed ID: 21763495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinct roles of two SEC scaffold proteins, AFF1 and AFF4, in regulating RNA polymerase II transcription elongation.
    Che Z; Liu X; Dai Q; Fang K; Guo C; Yue J; Fang H; Xie P; Luo Z; Lin C
    J Mol Cell Biol; 2024 Jan; 15(8):. PubMed ID: 37528066
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient Non-Epigenetic Activation of HIV Latency through the T-Cell Receptor Signalosome.
    Hokello J; Sharma AL; Tyagi M
    Viruses; 2020 Aug; 12(8):. PubMed ID: 32784426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. X-Linked RNA-Binding Motif Protein Modulates HIV-1 Infection of CD4
    Ma L; Jiang QA; Sun L; Yang X; Huang H; Jin X; Zhang C; Wang JH
    mBio; 2020 Apr; 11(2):. PubMed ID: 32317327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. HTLV-1 Tax activates HIV-1 transcription in latency models.
    Geddes VEV; José DP; Leal FE; Nixon DF; Tanuri A; Aguiar RS
    Virology; 2017 Apr; 504():45-51. PubMed ID: 28152383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The cell biology of HIV-1 latency and rebound.
    Mbonye U; Karn J
    Retrovirology; 2024 Apr; 21(1):6. PubMed ID: 38580979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The multifactorial nature of HIV-1 latency.
    Lassen K; Han Y; Zhou Y; Siliciano J; Siliciano RF
    Trends Mol Med; 2004 Nov; 10(11):525-31. PubMed ID: 15519278
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of the super-elongation complex subunit AFF4 C-terminal homology domain reveals requirements for AFF homo- and heterodimerization.
    Chen Y; Cramer P
    J Biol Chem; 2019 Jul; 294(27):10663-10673. PubMed ID: 31147444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lost in transcription: molecular mechanisms that control HIV latency.
    Taube R; Peterlin M
    Viruses; 2013 Mar; 5(3):902-27. PubMed ID: 23518577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HIV-1 replication and latency are regulated by translational control of cyclin T1.
    Hoque M; Shamanna RA; Guan D; Pe'ery T; Mathews MB
    J Mol Biol; 2011 Jul; 410(5):917-32. PubMed ID: 21763496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.