BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31239045)

  • 1. Synthetic bPNAs as allosteric triggers of hammerhead ribozyme catalysis.
    Liang Y; Mao J; Bong D
    Methods Enzymol; 2019; 623():151-175. PubMed ID: 31239045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifacial peptide nucleic acid as an allosteric switch for aptamer and ribozyme function.
    Xia X; Piao X; Bong D
    J Am Chem Soc; 2014 May; 136(20):7265-8. PubMed ID: 24796374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Duplex Stem Replacement with bPNA+ Triplex Hybrid Stems Enables Reporting on Tertiary Interactions of Internal RNA Domains.
    Miao S; Liang Y; Marathe I; Mao J; DeSantis C; Bong D
    J Am Chem Soc; 2019 Jun; 141(23):9365-9372. PubMed ID: 31094510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Triplex Hybridization of DNA and RNA via Syndiotactic Side Chain Presentation in Minimal bPNAs.
    Rundell S; Munyaradzi O; Bong D
    Biochemistry; 2022 Jan; 61(2):85-91. PubMed ID: 34955016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifacial peptide nucleic acid directs cooperative folding and assembly of binary, ternary, and quaternary DNA complexes.
    Piao X; Xia X; Bong D
    Biochemistry; 2013 Sep; 52(37):6313-23. PubMed ID: 23964711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bifacial PNAs Destabilize MALAT1 by 3' A-Tail Displacement from the U-Rich Internal Loop.
    Miao S; Bhunia D; Devari S; Liang Y; Munyaradzi O; Rundell S; Bong D
    ACS Chem Biol; 2021 Aug; 16(8):1600-1609. PubMed ID: 34382766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of bPNA Backbone Structural Constraints and Composition on Triplex Hybridization with DNA.
    Munyaradzi O; Rundell S; Bong D
    Chembiochem; 2022 Apr; 23(8):e202100707. PubMed ID: 35167719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small Molecule Recognition Triggers Secondary and Tertiary Interactions in DNA Folding and Hammerhead Ribozyme Catalysis.
    Mao J; DeSantis C; Bong D
    J Am Chem Soc; 2017 Jul; 139(29):9815-9818. PubMed ID: 28691825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Simplicity and Mechanistic Complexity in the Hammerhead Ribozyme.
    O'Rourke SM; Scott WG
    Prog Mol Biol Transl Sci; 2018; 159():177-202. PubMed ID: 30340787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Context-Sensitive Cleavage of Folded DNAs by Loop-Targeting bPNAs.
    Liang Y; Miao S; Mao J; DeSantis C; Bong D
    Biochemistry; 2020 Jul; 59(26):2410-2418. PubMed ID: 32519542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient ligation of the Schistosoma hammerhead ribozyme.
    Canny MD; Jucker FM; Pardi A
    Biochemistry; 2007 Mar; 46(12):3826-34. PubMed ID: 17319693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimal Hammerhead Ribozymes with Uncompromised Catalytic Activity.
    O'Rourke SM; Estell W; Scott WG
    J Mol Biol; 2015 Jul; 427(14):2340-7. PubMed ID: 25981451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifacial PNA complexation inhibits enzymatic access to DNA and RNA.
    Xia X; Piao X; Fredrick K; Bong D
    Chembiochem; 2014 Jan; 15(1):31-6. PubMed ID: 24259287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An allosteric hammerhead ribozyme.
    Porta H; Lizardi PM
    Biotechnology (N Y); 1995 Feb; 13(2):161-4. PubMed ID: 9634757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structure of an all-RNA hammerhead ribozyme.
    Scott WG; Finch JT; Klug A
    Nucleic Acids Symp Ser; 1995; (34):214-6. PubMed ID: 8841628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection.
    Tang J; Breaker RR
    RNA; 1997 Aug; 3(8):914-25. PubMed ID: 9257650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing general base catalysis in the hammerhead ribozyme.
    Thomas JM; Perrin DM
    J Am Chem Soc; 2008 Nov; 130(46):15467-75. PubMed ID: 18950173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments.
    Ojha RP; Dhingra MM; Sarma MH; Myer YP; Setlik RF; Shibata M; Kazim AL; Ornstein RL; Rein R; Turner CJ; Sarma RH
    J Biomol Struct Dyn; 1997 Oct; 15(2):185-215. PubMed ID: 9399149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic structures of the hammerhead ribozyme: relationship to ribozyme folding and catalysis.
    Wedekind JE; McKay DB
    Annu Rev Biophys Biomol Struct; 1998; 27():475-502. PubMed ID: 9646875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tolerance to exchanges of the Watson Crick base pair in the hammerhead ribozyme core is determined by surrounding elements.
    Przybilski R; Hammann C
    RNA; 2007 Oct; 13(10):1625-30. PubMed ID: 17666711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.