These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31239048)

  • 21. Crystallographic analysis of small ribozymes and riboswitches.
    Lippa GM; Liberman JA; Jenkins JL; Krucinska J; Salim M; Wedekind JE
    Methods Mol Biol; 2012; 848():159-84. PubMed ID: 22315069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. X-ray crystallography and NMR reveal complementary views of structure and dynamics.
    Brünger AT
    Nat Struct Biol; 1997 Oct; 4 Suppl():862-5. PubMed ID: 9377160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand.
    Thore S; Leibundgut M; Ban N
    Science; 2006 May; 312(5777):1208-11. PubMed ID: 16675665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches.
    Lin JC; Yoon J; Hyeon C; Thirumalai D
    Methods Enzymol; 2015; 553():235-58. PubMed ID: 25726468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-Transcriptional Folding and Regulation Mechanisms of Riboswitches.
    Gong S; Wang Y; Wang Z; Zhang W
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28703767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of Structure and Dynamics of the Guanidine-II Riboswitch from Escherichia coli by NMR Spectroscopy and Small-Angle X-ray Scattering (SAXS).
    Schamber T; Binas O; Schlundt A; Wacker A; Schwalbe H
    Chembiochem; 2022 Feb; 23(3):e202100564. PubMed ID: 34847270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamic and kinetic folding of riboswitches.
    Badelt S; Hammer S; Flamm C; Hofacker IL
    Methods Enzymol; 2015; 553():193-213. PubMed ID: 25726466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploiting preQ(1) riboswitches to regulate ribosomal frameshifting.
    Yu CH; Luo J; Iwata-Reuyl D; Olsthoorn RC
    ACS Chem Biol; 2013 Apr; 8(4):733-40. PubMed ID: 23327288
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biophysical Approaches to Bacterial Gene Regulation by Riboswitches.
    Perez-Gonzalez C; Grondin JP; Lafontaine DA; Carlos Penedo J
    Adv Exp Med Biol; 2016; 915():157-91. PubMed ID: 27193543
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing excited conformational states of nucleic acids by nitrogen CEST NMR spectroscopy.
    Zhao B; Baisden JT; Zhang Q
    J Magn Reson; 2020 Jan; 310():106642. PubMed ID: 31785475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.
    Schlundt A; Tants JN; Sattler M
    Methods; 2017 Apr; 118-119():119-136. PubMed ID: 28315749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advances that facilitate the study of large RNA structure and dynamics by nuclear magnetic resonance spectroscopy.
    Zhang H; Keane SC
    Wiley Interdiscip Rev RNA; 2019 Sep; 10(5):e1541. PubMed ID: 31025514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Co-crystal structure of the Fusobacterium ulcerans ZTP riboswitch using an X-ray free-electron laser.
    Jones C; Tran B; Conrad C; Stagno J; Trachman R; Fischer P; Meents A; Ferré-D'Amaré A
    Acta Crystallogr F Struct Biol Commun; 2019 Jul; 75(Pt 7):496-500. PubMed ID: 31282869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NMR Structural Profiling of Transcriptional Intermediates Reveals Riboswitch Regulation by Metastable RNA Conformations.
    Helmling C; Wacker A; Wolfinger MT; Hofacker IL; Hengesbach M; Fürtig B; Schwalbe H
    J Am Chem Soc; 2017 Feb; 139(7):2647-2656. PubMed ID: 28134517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SAM-II Riboswitch Samples at least Two Conformations in Solution in the Absence of Ligand: Implications for Recognition.
    Chen B; LeBlanc R; Dayie TK
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2724-7. PubMed ID: 26800479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping the landscape of RNA dynamics with NMR spectroscopy.
    Rinnenthal J; Buck J; Ferner J; Wacker A; Fürtig B; Schwalbe H
    Acc Chem Res; 2011 Dec; 44(12):1292-301. PubMed ID: 21894962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch.
    Suresh G; Srinivasan H; Nanda S; Priyakumar UD
    Biochemistry; 2016 Jun; 55(24):3349-60. PubMed ID: 27249101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated 3D RNA structure prediction using the RNAComposer method for riboswitches.
    Purzycka KJ; Popenda M; Szachniuk M; Antczak M; Lukasiak P; Blazewicz J; Adamiak RW
    Methods Enzymol; 2015; 553():3-34. PubMed ID: 25726459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.