These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 31239139)
1. A conceptual model of the visual control of posture. Bronstein AM Prog Brain Res; 2019; 248():285-302. PubMed ID: 31239139 [TBL] [Abstract][Full Text] [Related]
2. Human postural responses to motion of real and virtual visual environments under different support base conditions. Mergner T; Schweigart G; Maurer C; Blümle A Exp Brain Res; 2005 Dec; 167(4):535-56. PubMed ID: 16132969 [TBL] [Abstract][Full Text] [Related]
4. Influence of expectation on postural disturbance evoked by proprioceptive stimulation. Caudron S; Boy F; Forestier N; Guerraz M Exp Brain Res; 2008 Jan; 184(1):53-9. PubMed ID: 17703285 [TBL] [Abstract][Full Text] [Related]
5. Sensory reweighting dynamics following removal and addition of visual and proprioceptive cues. Assländer L; Peterka RJ J Neurophysiol; 2016 Aug; 116(2):272-85. PubMed ID: 27075544 [TBL] [Abstract][Full Text] [Related]
6. The effect of eye/head deviation and visual conflict on visually evoked postural responses. Wolsley CJ; Buckwell D; Sakellari V; Bronstein AM Brain Res Bull; 1996; 40(5-6):437-41; discussion 441-2. PubMed ID: 8886371 [TBL] [Abstract][Full Text] [Related]
7. The influence of dynamic visual cues for postural control in children aged 7-12 years. Sparto PJ; Redfern MS; Jasko JG; Casselbrant ML; Mandel EM; Furman JM Exp Brain Res; 2006 Jan; 168(4):505-16. PubMed ID: 16151780 [TBL] [Abstract][Full Text] [Related]
8. Vestibular-neck interaction and transformation of sensory coordinates. Mergner T; Huber W; Becker W J Vestib Res; 1997; 7(4):347-67. PubMed ID: 9218246 [TBL] [Abstract][Full Text] [Related]
9. Proprioceptive contribution of postural control as assessed from very slow oscillations of the support in healthy humans. Vaugoyeau M; Viel S; Amblard B; Azulay JP; Assaiante C Gait Posture; 2008 Feb; 27(2):294-302. PubMed ID: 17509884 [TBL] [Abstract][Full Text] [Related]
10. Velocity dependence of sensory reweighting in human balance control. Missen KJ; Carpenter MG; Assländer L J Neurophysiol; 2024 Aug; 132(2):454-460. PubMed ID: 38958285 [TBL] [Abstract][Full Text] [Related]
13. Differences in coding provided by proprioceptive and vestibular sensory signals may contribute to lateral instability in vestibular loss subjects. Allum JH; Oude Nijhuis LB; Carpenter MG Exp Brain Res; 2008 Jan; 184(3):391-410. PubMed ID: 17849108 [TBL] [Abstract][Full Text] [Related]
14. Postural control during galvanic vestibular stimulation in patients with persistent perceptual-postural dizziness. Woll J; Sprenger A; Helmchen C J Neurol; 2019 May; 266(5):1236-1249. PubMed ID: 30809703 [TBL] [Abstract][Full Text] [Related]
15. Interactions between vestibular and proprioceptive inputs triggering and modulating human balance-correcting responses differ across muscles. Allum JH; Honegger F Exp Brain Res; 1998 Aug; 121(4):478-94. PubMed ID: 9746156 [TBL] [Abstract][Full Text] [Related]
16. Neck proprioception compensates for age-related deterioration of vestibular self-motion perception. Schweigart G; Chien RD; Mergner T Exp Brain Res; 2002 Nov; 147(1):89-97. PubMed ID: 12373373 [TBL] [Abstract][Full Text] [Related]