BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31239440)

  • 41. A Facile and Versatile "Click" Approach Toward Multifunctional Ionic Metal-organic Frameworks for Efficient Conversion of CO
    Zhou LJ; Sun W; Yang NN; Li P; Gong T; Sun WJ; Sui Q; Gao EQ
    ChemSusChem; 2019 May; 12(10):2202-2210. PubMed ID: 30883018
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Green Conversion of CO
    Jiang XL; Jiao YE; Hou SL; Geng LC; Wang HZ; Zhao B
    Angew Chem Int Ed Engl; 2021 Sep; 60(37):20417-20423. PubMed ID: 34189807
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metal organic frameworks as nitric oxide catalysts.
    Harding JL; Reynolds MM
    J Am Chem Soc; 2012 Feb; 134(7):3330-3. PubMed ID: 22263610
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly Active and Stable Single-Atom Cu Catalysts Supported by a Metal-Organic Framework.
    Abdel-Mageed AM; Rungtaweevoranit B; Parlinska-Wojtan M; Pei X; Yaghi OM; Behm RJ
    J Am Chem Soc; 2019 Apr; 141(13):5201-5210. PubMed ID: 30852893
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO
    Wang X; Chen Z; Zhao X; Yao T; Chen W; You R; Zhao C; Wu G; Wang J; Huang W; Yang J; Hong X; Wei S; Wu Y; Li Y
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1944-1948. PubMed ID: 29266615
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Engineering the Low Coordinated Pt Single Atom to Achieve the Superior Electrocatalytic Performance toward Oxygen Reduction.
    Song Z; Zhu YN; Liu H; Banis MN; Zhang L; Li J; Doyle-Davis K; Li R; Sham TK; Yang L; Young A; Botton GA; Liu LM; Sun X
    Small; 2020 Oct; 16(43):e2003096. PubMed ID: 33015944
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rational Stepwise Construction of Different Heterometallic-Organic Frameworks (HMOFs) for Highly Efficient CO
    Liu J; Wu D; Yang GP; Wu Y; Zhang S; Jin J; Wang YY
    Chemistry; 2020 Apr; 26(24):5400-5406. PubMed ID: 31943406
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Size selectivity of a copper metal-organic framework and origin of catalytic activity in epoxide alcoholysis.
    Jiang D; Urakawa A; Yulikov M; Mallat T; Jeschke G; Baiker A
    Chemistry; 2009 Nov; 15(45):12255-62. PubMed ID: 19806616
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ionic Exchange of Metal-Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO
    Zhao C; Dai X; Yao T; Chen W; Wang X; Wang J; Yang J; Wei S; Wu Y; Li Y
    J Am Chem Soc; 2017 Jun; 139(24):8078-8081. PubMed ID: 28595012
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Catalytic CO
    Ansari SN; Kumar P; Gupta AK; Mathur P; Mobin SM
    Inorg Chem; 2019 Aug; 58(15):9723-9732. PubMed ID: 31322862
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bottom-Up Assembly of a Highly Efficient Metal-Organic Framework for Cooperative Catalysis.
    Li C; Tang H; Fang Y; Xiao Z; Wang K; Wu X; Niu H; Zhu C; Zhou HC
    Inorg Chem; 2018 Nov; 57(21):13912-13919. PubMed ID: 30299095
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly efficient electroconversion of carbon dioxide into hydrocarbons by cathodized copper-organic frameworks.
    Yang F; Chen A; Deng PL; Zhou Y; Shahid Z; Liu H; Xia BY
    Chem Sci; 2019 Sep; 10(34):7975-7981. PubMed ID: 31853353
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Construction of Hierarchical Metal-Organic Frameworks by Competitive Coordination Strategy for Highly Efficient CO
    Chang GG; Ma XC; Zhang YX; Wang LY; Tian G; Liu JW; Wu J; Hu ZY; Yang XY; Chen B
    Adv Mater; 2019 Dec; 31(52):e1904969. PubMed ID: 31736178
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanocage-Based Tb
    Lv H; Chen H; Fan L; Zhang X
    Inorg Chem; 2022 Oct; 61(39):15558-15568. PubMed ID: 36113120
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single-Atom Iron Catalysts on Overhang-Eave Carbon Cages for High-Performance Oxygen Reduction Reaction.
    Hou CC; Zou L; Sun L; Zhang K; Liu Z; Li Y; Li C; Zou R; Yu J; Xu Q
    Angew Chem Int Ed Engl; 2020 May; 59(19):7384-7389. PubMed ID: 32153103
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly Robust 3s-3d {CaZn}-Organic Framework for Excellent Catalytic Performance on Chemical Fixation of CO
    Chen H; Fan L; Zhang X
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54884-54892. PubMed ID: 33231426
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CO
    Zhang S; Fan Q; Xia R; Meyer TJ
    Acc Chem Res; 2020 Jan; 53(1):255-264. PubMed ID: 31913013
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single-Sites and Nanoparticles at Tailored Interfaces Prepared via Surface Organometallic Chemistry from Thermolytic Molecular Precursors.
    Copéret C
    Acc Chem Res; 2019 Jun; 52(6):1697-1708. PubMed ID: 31150207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.