BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31240289)

  • 1. Trapping of sub-100 nm nanoparticles using gigahertz acoustofluidic tweezers for biosensing applications.
    Cui W; Mu L; Duan X; Pang W; Reed MA
    Nanoscale; 2019 Aug; 11(31):14625-14634. PubMed ID: 31240289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput cell focusing and separation via acoustofluidic tweezers.
    Wu M; Chen K; Yang S; Wang Z; Huang PH; Mai J; Li ZY; Huang TJ
    Lab Chip; 2018 Sep; 18(19):3003-3010. PubMed ID: 30131991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A self-contained acoustofluidic platform for biomarker detection.
    Chen X; Zhang C; Liu B; Chang Y; Pang W; Duan X
    Lab Chip; 2022 Oct; 22(20):3817-3826. PubMed ID: 36069822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fully integrated distance readout ELISA-Chip for point-of-care testing with sample-in-answer-out capability.
    Liu D; Li X; Zhou J; Liu S; Tian T; Song Y; Zhu Z; Zhou L; Ji T; Yang C
    Biosens Bioelectron; 2017 Oct; 96():332-338. PubMed ID: 28525851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small extracellular vesicles' enrichment from biological fluids using an acoustic trap.
    Chen M; Pei Z; Wang Y; Song F; Zhong J; Wang C; Ma Y
    Analyst; 2024 May; 149(11):3169-3177. PubMed ID: 38639189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-State Microfluidics with Integrated Thin-Film Acoustic Sensors.
    Zhang M; Huang J; Lu Y; Pang W; Zhang H; Duan X
    ACS Sens; 2018 Aug; 3(8):1584-1591. PubMed ID: 30039702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enriching Nanoparticles via Acoustofluidics.
    Mao Z; Li P; Wu M; Bachman H; Mesyngier N; Guo X; Liu S; Costanzo F; Huang TJ
    ACS Nano; 2017 Jan; 11(1):603-612. PubMed ID: 28068078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antithyroid drug detection using an enzyme cascade blocking in a nanoparticle-based lab-on-a-chip system.
    Kurbanoglu S; Mayorga-Martinez CC; Medina-Sánchez M; Rivas L; Ozkan SA; Merkoçi A
    Biosens Bioelectron; 2015 May; 67():670-6. PubMed ID: 25459057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: A sensitive platform for one-step fluorescence detection of prostate specific antigen.
    Xu DD; Deng YL; Li CY; Lin Y; Tang HW
    Biosens Bioelectron; 2017 Jan; 87():881-887. PubMed ID: 27662582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated lab-on-a-chip-based electrochemical biosensor for rapid and sensitive detection of cancer biomarkers.
    Uludag Y; Narter F; Sağlam E; Köktürk G; Gök MY; Akgün M; Barut S; Budak S
    Anal Bioanal Chem; 2016 Nov; 408(27):7775-7783. PubMed ID: 27562751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Power-free chip enzyme immunoassay for detection of prostate specific antigen (PSA) in serum.
    Adel Ahmed H; Azzazy HM
    Biosens Bioelectron; 2013 Nov; 49():478-84. PubMed ID: 23811482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical immunosensor for detection of prostate specific antigen based on an acid cleavable linker into MSN-based controlled release system.
    Fan D; Li N; Ma H; Li Y; Hu L; Du B; Wei Q
    Biosens Bioelectron; 2016 Nov; 85():580-586. PubMed ID: 27236723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel split mode TFBAR device for quantitative measurements of prostate specific antigen in a small sample of whole blood.
    Wajs E; Rughoobur G; Burling K; George A; Flewitt AJ; Gnanapragasam VJ
    Nanoscale; 2020 May; 12(17):9647-9652. PubMed ID: 32319508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems.
    Hammarström B; Laurell T; Nilsson J
    Lab Chip; 2012 Nov; 12(21):4296-304. PubMed ID: 22955667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixing during Trapping Enabled a Continuous-Flow Microfluidic Smartphone Immunoassay Using Acoustic Streaming.
    Chen X; Ning Y; Pan S; Liu B; Chang Y; Pang W; Duan X
    ACS Sens; 2021 Jun; 6(6):2386-2394. PubMed ID: 34102847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Cell-Phone-Based Acoustofluidic Platform for Quantitative Point-of-Care Testing.
    Zhang L; Tian Z; Bachman H; Zhang P; Huang TJ
    ACS Nano; 2020 Mar; 14(3):3159-3169. PubMed ID: 32119517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-nano-bio acoustic system for the detection of foodborne pathogens in real samples.
    Papadakis G; Murasova P; Hamiot A; Tsougeni K; Kaprou G; Eck M; Rabus D; Bilkova Z; Dupuy B; Jobst G; Tserepi A; Gogolides E; Gizeli E
    Biosens Bioelectron; 2018 Jul; 111():52-58. PubMed ID: 29635118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplexed detection of cancer biomarkers using a microfluidic platform integrating single bead trapping and acoustic mixing techniques.
    Chen H; Chen C; Bai S; Gao Y; Metcalfe G; Cheng W; Zhu Y
    Nanoscale; 2018 Nov; 10(43):20196-20206. PubMed ID: 30256377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free biosensing using a microring resonator integrated with poly-(dimethylsiloxane) microfluidic channels.
    Wu S; Guo Y; Wang W; Zhou J; Zhang Q
    Rev Sci Instrum; 2019 Mar; 90(3):035004. PubMed ID: 30927803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced immune capture of extracellular vesicles with gelatin nanoparticles and acoustic mixing.
    Mao Y; Li J; Li J; Su C; Long K; Li D; Ding Z; Guo S
    Analyst; 2024 May; 149(11):3195-3203. PubMed ID: 38651605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.