BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 31240706)

  • 1. Botulinum neurotoxins A, B, C, E, and F preferentially enter cultured human motor neurons compared to other cultured human neuronal populations.
    Pellett S; Tepp WH; Johnson EA
    FEBS Lett; 2019 Sep; 593(18):2675-2685. PubMed ID: 31240706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Botulinum Neurotoxins Can Enter Cultured Neurons Independent of Synaptic Vesicle Recycling.
    Pellett S; Tepp WH; Scherf JM; Johnson EA
    PLoS One; 2015; 10(7):e0133737. PubMed ID: 26207366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Split luciferase-based assay to detect botulinum neurotoxins using hiPSC-derived motor neurons.
    Cotter L; Yu F; Roqueviere S; Duchesne de Lamotte J; Krupp J; Dong M; Nicoleau C
    Commun Biol; 2023 Jan; 6(1):122. PubMed ID: 36717690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal selectivity of botulinum neurotoxins.
    Poulain B; Lemichez E; Popoff MR
    Toxicon; 2020 Apr; 178():20-32. PubMed ID: 32094099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of ELISA as endpoint in neuronal cell-based assay for BoNT detection using hiPSC derived neurons.
    Pellett S; Tepp WH; Johnson EA; Sesardic D
    J Pharmacol Toxicol Methods; 2017 Nov; 88(Pt 1):1-6. PubMed ID: 28465161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Motor Neurons Differentiated from Human Induced Pluripotent Stem Cells for the Use in Cell-Based Botulinum Neurotoxin Activity Assays.
    Schenke M; Schjeide BM; Püschel GP; Seeger B
    Toxins (Basel); 2020 Apr; 12(5):. PubMed ID: 32344847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and Characterization of the Novel Botulinum Neurotoxin A Subtype 6.
    Moritz MS; Tepp WH; Bradshaw M; Johnson EA; Pellett S
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30355669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate cleavage and duration of action of botulinum neurotoxin type FA ("H, HA").
    Pellett S; Tepp WH; Lin G; Johnson EA
    Toxicon; 2018 Jun; 147():38-46. PubMed ID: 29273248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons.
    Restani L; Giribaldi F; Manich M; Bercsenyi K; Menendez G; Rossetto O; Caleo M; Schiavo G
    PLoS Pathog; 2012 Dec; 8(12):e1003087. PubMed ID: 23300443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human-Relevant Sensitivity of iPSC-Derived Human Motor Neurons to BoNT/A1 and B1.
    Schenke M; Prause HC; Bergforth W; Przykopanski A; Rummel A; Klawonn F; Seeger B
    Toxins (Basel); 2021 Aug; 13(8):. PubMed ID: 34437455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of botulinum neurotoxin serotypes a and B with synaptic vesicle protein complexes.
    Baldwin MR; Barbieri JT
    Biochemistry; 2007 Mar; 46(11):3200-10. PubMed ID: 17311420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake of botulinum neurotoxin into cultured neurons.
    Keller JE; Cai F; Neale EA
    Biochemistry; 2004 Jan; 43(2):526-32. PubMed ID: 14717608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atoxic derivative of botulinum neurotoxin A as a prototype molecular vehicle for targeted delivery to the neuronal cytoplasm.
    Vazquez-Cintron EJ; Vakulenko M; Band PA; Stanker LH; Johnson EA; Ichtchenko K
    PLoS One; 2014; 9(1):e85517. PubMed ID: 24465585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of gene expression in induced pluripotent stem cell-derived human neurons exposed to botulinum neurotoxin A subtype 1 and a type A atoxic derivative.
    Scherf JM; Hu XS; Tepp WH; Ichtchenko K; Johnson EA; Pellett S
    PLoS One; 2014; 9(10):e111238. PubMed ID: 25337697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Traffic of botulinum toxins A and E in excitatory and inhibitory neurons.
    Verderio C; Grumelli C; Raiteri L; Coco S; Paluzzi S; Caccin P; Rossetto O; Bonanno G; Montecucco C; Matteoli M
    Traffic; 2007 Feb; 8(2):142-53. PubMed ID: 17241445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel application of human neurons derived from induced pluripotent stem cells for highly sensitive botulinum neurotoxin detection.
    Whitemarsh RC; Strathman MJ; Chase LG; Stankewicz C; Tepp WH; Johnson EA; Pellett S
    Toxicol Sci; 2012 Apr; 126(2):426-35. PubMed ID: 22223483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A protein chip membrane-capture assay for botulinum neurotoxin activity.
    Marconi S; Ferracci G; Berthomieu M; Kozaki S; Miquelis R; Boucraut J; Seagar M; Lévêque C
    Toxicol Appl Pharmacol; 2008 Dec; 233(3):439-46. PubMed ID: 18845174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological and Immunological Characterization of a Functional L-HN Derivative of Botulinum Neurotoxin Serotype F.
    Li Z; Li B; Lu J; Liu X; Tan X; Wang R; Du P; Yu S; Xu Q; Pang X; Yu Y; Yang Z
    Toxins (Basel); 2023 Mar; 15(3):. PubMed ID: 36977091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. hiPSC-Derived Neurons Provide a Robust and Physiologically Relevant
    Lamotte JD; Roqueviere S; Gautier H; Raban E; Bouré C; Fonfria E; Krupp J; Nicoleau C
    Front Pharmacol; 2020; 11():617867. PubMed ID: 33519485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity of botulinum neurotoxin type D (strain 1873) in human neurons.
    Pellett S; Tepp WH; Scherf JM; Pier CL; Johnson EA
    Toxicon; 2015 Jul; 101():63-9. PubMed ID: 25937339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.