These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 31241254)

  • 1. Use of tendon to produce decellularized sheets of mineralized collagen fibrils for bone tissue repair and regeneration.
    Grue BH; Veres SP
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):845-856. PubMed ID: 31241254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: Physicochemical, mechanical and in vivo evaluations.
    El-Fiqi A; Kim JH; Kim HW
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110660. PubMed ID: 32204088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternate soaking enables easy control of mineralized collagen scaffold mechanics from nano- to macro-scale.
    Grue BH; Vincent LC; Kreplak L; Veres SP
    J Mech Behav Biomed Mater; 2020 Oct; 110():103863. PubMed ID: 32957181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects.
    Wang Y; Van Manh N; Wang H; Zhong X; Zhang X; Li C
    Int J Nanomedicine; 2016; 11():2053-67. PubMed ID: 27274235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic collagen-hydroxyapatite composite fabricated via a novel perfusion-flow mineralization technique.
    Antebi B; Cheng X; Harris JN; Gower LB; Chen XD; Ling J
    Tissue Eng Part C Methods; 2013 Jul; 19(7):487-96. PubMed ID: 23157544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of intrafibrillar and extrafibrillar mineralized collagen/apatite scaffolds with a hierarchical structure.
    Hu C; Zilm M; Wei M
    J Biomed Mater Res A; 2016 May; 104(5):1153-61. PubMed ID: 26748775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: influence of polymer molecular weight.
    Jee SS; Thula TT; Gower LB
    Acta Biomater; 2010 Sep; 6(9):3676-86. PubMed ID: 20359554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Incorporation of Marine Coral Microparticles into Collagen-Based Scaffolds Promotes Osteogenesis of Human Mesenchymal Stromal Cells via Calcium Ion Signalling.
    Sheehy EJ; Lemoine M; Clarke D; Gonzalez Vazquez A; O'Brien FJ
    Mar Drugs; 2020 Jan; 18(2):. PubMed ID: 31979233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of increasing mineralization on pre-osteoblast response to native collagen fibril scaffolds for bone tissue repair and regeneration.
    Grue BH; Veres SP
    J Appl Biomater Funct Mater; 2022; 20():22808000221104000. PubMed ID: 35666125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralization of Phosphorylated Fish Skin Collagen/Mangosteen Scaffolds as Potential Materials for Bone Tissue Regeneration.
    Milan EP; Rodrigues MÁV; Martins VCA; Plepis AMG; Fuhrmann-Lieker T; Horn MM
    Molecules; 2021 May; 26(10):. PubMed ID: 34068232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of decellularization process for developing osteogenic bovine cancellous bone scaffolds in-vitro.
    Al Qabbani A; Rani KGA; Syarif J; AlKawas S; Sheikh Abdul Hamid S; Samsudin AR; Azlina A
    PLoS One; 2023; 18(4):e0283922. PubMed ID: 37018321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured Tendon-Derived Scaffolds for Enhanced Bone Regeneration by Human Adipose-Derived Stem Cells.
    Ko E; Alberti K; Lee JS; Yang K; Jin Y; Shin J; Yang HS; Xu Q; Cho SW
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):22819-29. PubMed ID: 27502160
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Pang Y; Li D; Zhou J; Liu X; Li M; Zhang Y; Zhang D; Zhang X; Cai Q
    Biomed Mater; 2022 Oct; 17(6):. PubMed ID: 36170861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering.
    Pallela R; Venkatesan J; Janapala VR; Kim SK
    J Biomed Mater Res A; 2012 Feb; 100(2):486-95. PubMed ID: 22125128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing Collagen Scaffolds for Bone Engineering: Effects of Cross-linking and Mineral Content on Structural Contraction and Osteogenesis.
    Lee JC; Pereira CT; Ren X; Huang W; Bischoff D; Weisgerber DW; Yamaguchi DT; Harley BA; Miller TA
    J Craniofac Surg; 2015 Sep; 26(6):1992-6. PubMed ID: 26147021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels.
    Jiang W; Griffanti G; Tamimi F; McKee MD; Nazhat SN
    J Struct Biol; 2020 Oct; 212(1):107592. PubMed ID: 32736073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering.
    Zhou C; Ye X; Fan Y; Ma L; Tan Y; Qing F; Zhang X
    Biofabrication; 2014 Sep; 6(3):035013. PubMed ID: 24873777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic mineralization of hydrogels for bone tissue engineering by incorporation of alkaline phosphatase.
    Douglas TE; Messersmith PB; Chasan S; Mikos AG; de Mulder EL; Dickson G; Schaubroeck D; Balcaen L; Vanhaecke F; Dubruel P; Jansen JA; Leeuwenburgh SC
    Macromol Biosci; 2012 Aug; 12(8):1077-89. PubMed ID: 22648976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: high-resolution tomography and in vitro study.
    Shkarina S; Shkarin R; Weinhardt V; Melnik E; Vacun G; Kluger PJ; Loza K; Epple M; Ivlev SI; Baumbach T; Surmeneva MA; Surmenev RA
    Sci Rep; 2018 Jun; 8(1):8907. PubMed ID: 29891842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.