These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31241330)

  • 1. Programmable Artificial Cells Using Histamine-Responsive Synthetic Riboswitch.
    Dwidar M; Seike Y; Kobori S; Whitaker C; Matsuura T; Yokobayashi Y
    J Am Chem Soc; 2019 Jul; 141(28):11103-11114. PubMed ID: 31241330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression.
    Berens C; Groher F; Suess B
    Biotechnol J; 2015 Feb; 10(2):246-57. PubMed ID: 25676052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of orthogonally selective bacterial riboswitches by targeted mutagenesis and in vivo screening.
    Vincent HA; Robinson CJ; Wu MC; Dixon N; Micklefield J
    Methods Mol Biol; 2014; 1111():107-29. PubMed ID: 24549615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Methods for Modeling Aptamers and Designing Riboswitches.
    Gong S; Wang Y; Wang Z; Zhang W
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29149090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond Plug and Pray: Context Sensitivity and
    Günzel C; Kühnl F; Arnold K; Findeiß S; Weinberg CE; Stadler PF; Mörl M
    RNA Biol; 2021 Apr; 18(4):457-467. PubMed ID: 32882151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circularly-Permuted Pistol Ribozyme: A Synthetic Ribozyme Scaffold for Mammalian Riboswitches.
    Mustafina K; Nomura Y; Rotrattanadumrong R; Yokobayashi Y
    ACS Synth Biol; 2021 Aug; 10(8):2040-2048. PubMed ID: 34374523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of modular "plug-and-play" expression platforms derived from natural riboswitches for engineering novel genetically encodable RNA regulatory devices.
    Trausch JJ; Batey RT
    Methods Enzymol; 2015; 550():41-71. PubMed ID: 25605380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro selection of RNA aptamers for a small-molecule dye.
    Murata A; Sato S
    Methods Mol Biol; 2014; 1111():17-28. PubMed ID: 24549609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of artificial ON-riboswitches.
    Ogawa A
    Methods Mol Biol; 2014; 1111():165-81. PubMed ID: 24549619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic Applications of Aptamer-Based Riboswitches.
    Lee CH; Han SR; Lee SW
    Nucleic Acid Ther; 2016 Feb; 26(1):44-51. PubMed ID: 26539634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering and In Vivo Applications of Riboswitches.
    Hallberg ZF; Su Y; Kitto RZ; Hammond MC
    Annu Rev Biochem; 2017 Jun; 86():515-539. PubMed ID: 28375743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties.
    Rode AB; Endoh T; Sugimoto N
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):905-9. PubMed ID: 25470002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening and selection of artificial riboswitches.
    Harbaugh SV; Martin JA; Weinstein J; Ingram G; Kelley-Loughnane N
    Methods; 2018 Jul; 143():77-89. PubMed ID: 29778645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applicability of a computational design approach for synthetic riboswitches.
    Domin G; Findeiß S; Wachsmuth M; Will S; Stadler PF; Mörl M
    Nucleic Acids Res; 2017 Apr; 45(7):4108-4119. PubMed ID: 27994029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular arrangement of regulatory RNA elements.
    Roßmanith J; Narberhaus F
    RNA Biol; 2017 Mar; 14(3):287-292. PubMed ID: 28010165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design.
    Aboul-ela F; Huang W; Abd Elrahman M; Boyapati V; Li P
    Wiley Interdiscip Rev RNA; 2015; 6(6):631-50. PubMed ID: 26361734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated physics-based design of synthetic riboswitches from diverse RNA aptamers.
    Espah Borujeni A; Mishler DM; Wang J; Huso W; Salis HM
    Nucleic Acids Res; 2016 Jan; 44(1):1-13. PubMed ID: 26621913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Engineering and screening of artificial riboswitch as a novel gene control element].
    Yang H; Diao Y; Lin J; Xu R
    Sheng Wu Gong Cheng Xue Bao; 2012 Feb; 28(2):134-43. PubMed ID: 22667116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Artificial Riboswitches as Biosensors.
    Findeiß S; Etzel M; Will S; Mörl M; Stadler PF
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28867802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eukaryotic artificial ON-riboswitches that respond efficiently to mid-sized short peptides.
    Takahashi H; Okubo R; Ogawa A
    Bioorg Med Chem Lett; 2022 Sep; 71():128839. PubMed ID: 35654302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.