BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31241333)

  • 1. Predicting High-Concentration Interactions of Monoclonal Antibody Solutions: Comparison of Theoretical Approaches for Strongly Attractive Versus Repulsive Conditions.
    Calero-Rubio C; Saluja A; Sahin E; Roberts CJ
    J Phys Chem B; 2019 Jul; 123(27):5709-5720. PubMed ID: 31241333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Protein-Protein Interactions of Concentrated Antibody Solutions Using Dilute Solution Data and Coarse-Grained Molecular Models.
    Calero-Rubio C; Ghosh R; Saluja A; Roberts CJ
    J Pharm Sci; 2018 May; 107(5):1269-1281. PubMed ID: 29274822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Protein Interactions of Concentrated Globular Protein Solutions Using Colloidal Models.
    Woldeyes MA; Calero-Rubio C; Furst EM; Roberts CJ
    J Phys Chem B; 2017 May; 121(18):4756-4767. PubMed ID: 28422503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Experimental
    Shahfar H; O'Brien CJ; Budyak IL; Roberts CJ
    Mol Pharm; 2022 Nov; 19(11):3820-3830. PubMed ID: 36194430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Well Do Low- and High-Concentration Protein Interactions Predict Solution Viscosities of Monoclonal Antibodies?
    Woldeyes MA; Qi W; Razinkov VI; Furst EM; Roberts CJ
    J Pharm Sci; 2019 Jan; 108(1):142-154. PubMed ID: 30017887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatically Mediated Protein-Protein Interactions for Monoclonal Antibodies: A Combined Experimental and Coarse-Grained Molecular Modeling Approach.
    Ferreira GM; Calero-Rubio C; Sathish HA; Remmele RL; Roberts CJ
    J Pharm Sci; 2019 Jan; 108(1):120-132. PubMed ID: 30419274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Glycosylation on Protein-Protein Self-Interactions of Monoclonal Antibodies.
    Palakollu V; Motabar L; Roberts CJ
    Mol Pharm; 2024 Mar; 21(3):1414-1423. PubMed ID: 38386020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of electrostatics in protein-protein interactions of a monoclonal antibody.
    Roberts D; Keeling R; Tracka M; van der Walle CF; Uddin S; Warwicker J; Curtis R
    Mol Pharm; 2014 Jul; 11(7):2475-89. PubMed ID: 24892385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-Grained Antibody Models for "Weak" Protein-Protein Interactions from Low to High Concentrations.
    Calero-Rubio C; Saluja A; Roberts CJ
    J Phys Chem B; 2016 Jul; 120(27):6592-605. PubMed ID: 27314827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature Dependence of Protein Solution Viscosity and Protein-Protein Interactions: Insights into the Origins of High-Viscosity Protein Solutions.
    Woldeyes MA; Qi W; Razinkov VI; Furst EM; Roberts CJ
    Mol Pharm; 2020 Dec; 17(12):4473-4482. PubMed ID: 33170708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The osmotic pressure of highly concentrated monoclonal antibody solutions: effect of solution conditions.
    Binabaji E; Rao S; Zydney AL
    Biotechnol Bioeng; 2014 Mar; 111(3):529-36. PubMed ID: 23996891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical characterization and molecular simulation of electrostatically driven self-association of a single-chain antibody.
    O'Brien CJ; Calero-Rubio C; Razinkov VI; Robinson AS; Roberts CJ
    Protein Sci; 2018 Jul; 27(7):1275-1285. PubMed ID: 29637646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of Protein-Protein Interactions in a Mixture of Two Monoclonal Antibodies.
    Singh P; Roche A; van der Walle CF; Uddin S; Du J; Warwicker J; Pluen A; Curtis R
    Mol Pharm; 2019 Dec; 16(12):4775-4786. PubMed ID: 31613625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermolecular interactions of IgG1 monoclonal antibodies at high concentrations characterized by light scattering.
    Scherer TM; Liu J; Shire SJ; Minton AP
    J Phys Chem B; 2010 Oct; 114(40):12948-57. PubMed ID: 20849134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying Excipient Modulated Physical Stability and Viscosity of Monoclonal Antibody Formulations Using Small-Angle Scattering.
    Xu AY; Castellanos MM; Mattison K; Krueger S; Curtis JE
    Mol Pharm; 2019 Oct; 16(10):4319-4338. PubMed ID: 31487466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatically Mediated Attractive Self-Interactions and Reversible Self-Association of Fc-Fusion Proteins.
    Forder JK; Palakollu V; Adhikari S; Blanco MA; Derebe MG; Ferguson HM; Luthra SA; Munsell EV; Roberts CJ
    Mol Pharm; 2024 Mar; 21(3):1321-1333. PubMed ID: 38334418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards an improved prediction of concentrated antibody solution viscosity using the Huggins coefficient.
    Roche A; Gentiluomo L; Sibanda N; Roessner D; Friess W; Trainoff SP; Curtis R
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1813-1824. PubMed ID: 34624723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein structural conformation and not second virial coefficient relates to long-term irreversible aggregation of a monoclonal antibody and ovalbumin in solution.
    Bajaj H; Sharma VK; Badkar A; Zeng D; Nema S; Kalonia DS
    Pharm Res; 2006 Jun; 23(6):1382-94. PubMed ID: 16715374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From osmotic second virial coefficient (B22 ) to phase behavior of a monoclonal antibody.
    Rakel N; Bauer KC; Galm L; Hubbuch J
    Biotechnol Prog; 2015; 31(2):438-51. PubMed ID: 25683855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatically Driven Protein-Protein Interactions: Quantitative Prediction of Second Osmotic Virial Coefficients to Aid Antibody Design.
    Shahfar H; Du Q; Parupudi A; Shan L; Esfandiary R; Roberts CJ
    J Phys Chem Lett; 2022 Feb; 13(5):1366-1372. PubMed ID: 35112863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.