These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 3124141)
1. Importance of the mitochondrial amino acid pool in the sensitivity of erythroid cells to chloramphenicol: role of glycine and serine. Abou-Khalil S; Abou-Khalil WH; Whitney PL; Yunis AA Pharmacology; 1987; 35(6):308-16. PubMed ID: 3124141 [TBL] [Abstract][Full Text] [Related]
2. On the mechanisms of erythroid cell sensitivity to chloramphenicol: studies on mitochondria isolated from erythroid and myeloid tumors. Abou-Khalil S; Salem Z; Abou-Khalil WH; Yunis AA Arch Biochem Biophys; 1981 Feb; 206(2):242-8. PubMed ID: 6939411 [No Abstract] [Full Text] [Related]
3. Atypical pattern of utilization of amino acids for mitochondrial protein synthesis in HeLa cells. Costantino P; Attardi G Proc Natl Acad Sci U S A; 1973 May; 70(5):1490-4. PubMed ID: 4514318 [TBL] [Abstract][Full Text] [Related]
4. Inhibition by rhodamine 123 of protein synthesis in mitochondria of normal and cancer tissues. Abou-Khalil WH; Arimura GK; Yunis AA; Abou-Khalil S Biochem Biophys Res Commun; 1986 Jun; 137(2):759-65. PubMed ID: 2942140 [TBL] [Abstract][Full Text] [Related]
5. Amino acid pool formation in Pseudomonas aeruginosa. Kay WW; Gronlund AF J Bacteriol; 1969 Jan; 97(1):282-91. PubMed ID: 4974394 [TBL] [Abstract][Full Text] [Related]
6. Mitochondrial metabolism in normal, myeloid, and erythroid hyperplastic rabbit bone marrow: effect of chloramphenicol. Abou-Khalil S; Salem Z; Yunis AA Am J Hematol; 1980; 8(1):71-9. PubMed ID: 7395864 [TBL] [Abstract][Full Text] [Related]
7. Glycine consumption and mitochondrial serine hydroxymethyltransferase in cancer cells: the heme connection. di Salvo ML; Contestabile R; Paiardini A; Maras B Med Hypotheses; 2013 May; 80(5):633-6. PubMed ID: 23474074 [TBL] [Abstract][Full Text] [Related]
8. Protein synthesis in mitochondria. 3. On the effects of inhibitors on the incorporation of amino acids into protein by intact mitochondria and digitonin fractions. Kroon AM Biochim Biophys Acta; 1965 Oct; 108(2):275-84. PubMed ID: 5865510 [No Abstract] [Full Text] [Related]
9. The pleiotypic response to serine in erythroblastic leukemic cells. Galbraith RA; Buse MG Horm Metab Res; 1986 Mar; 18(3):173-6. PubMed ID: 3084370 [TBL] [Abstract][Full Text] [Related]
10. Anthelmintic efficacy of genistein, the active principle of Flemingia vestita (Fabaceae): alterations in the free amino acid pool and ammonia levels in the fluke, Fasciolopsis buski. Kar PK; Tandon V; Saha N Parasitol Int; 2004 Dec; 53(4):287-91. PubMed ID: 15464437 [TBL] [Abstract][Full Text] [Related]
11. Amino acid incorporation by mitochondria of the adrenal cortex: the effect of chloramphenicol. Garren LD; Crocco RM Biochem Biophys Res Commun; 1967 Mar; 26(6):722-9. PubMed ID: 6030985 [No Abstract] [Full Text] [Related]
12. Stimulation by thyroxine of amino acid incorporation into mitochondria. Buchanan J; Tapley DF Endocrinology; 1966 Jul; 79(1):81-9. PubMed ID: 5917134 [No Abstract] [Full Text] [Related]
13. Transport of glycine, serine, and proline into spinach leaf mitochondria. Yu C; Claybrook DL; Huang AH Arch Biochem Biophys; 1983 Nov; 227(1):180-7. PubMed ID: 6416178 [TBL] [Abstract][Full Text] [Related]
14. Differences of mitochondrial protein synthesis in vitro between tumour and normal tissues. Graffi A; Butschak G; Schneider EJ Biochem Biophys Res Commun; 1965 Dec; 21(5):418-23. PubMed ID: 5880516 [No Abstract] [Full Text] [Related]
15. In vivo incorporation of different amino acids into electrophoretically characteristic polypeptides synthesized by HeLa cell mitochondria. Ching E; Costantino P; Attardi G Biochem Biophys Res Commun; 1977 Nov; 79(2):451-60. PubMed ID: 588277 [No Abstract] [Full Text] [Related]
16. Amino acid metabolism in euryhaline bivalves: regulation of glycine accumulation in ribbed mussel gills. Ellis LL; Burcham JM; Paynter KT; Bishop SH J Exp Zool; 1985 Mar; 233(3):347-58. PubMed ID: 3919146 [TBL] [Abstract][Full Text] [Related]
17. Prominent glutamine oxidation activity in mitochondria of hematopoietic tumors. Abou-Khalil WH; Yunis AA; Abou-Khalil S Cancer Res; 1983 May; 43(5):1990-3. PubMed ID: 6572560 [TBL] [Abstract][Full Text] [Related]
18. Identification and efficacy of glycine, serine and threonine metabolism in potentiating kanamycin-mediated killing of Edwardsiella piscicida. Ye JZ; Lin XM; Cheng ZX; Su YB; Li WX; Ali FM; Zheng J; Peng B J Proteomics; 2018 Jul; 183():34-44. PubMed ID: 29753025 [TBL] [Abstract][Full Text] [Related]
19. Comparison of L-monosodium glutamate and L-amino acid taste in rats. Delay ER; Mitzelfelt JD; Westburg AM; Gross N; Duran BL; Eschle BK Neuroscience; 2007 Aug; 148(1):266-78. PubMed ID: 17629624 [TBL] [Abstract][Full Text] [Related]
20. Induction of resting microglia in culture medium devoid of glycine and serine. Tanaka J; Toku K; Matsuda S; Sudo S; Fujita H; Sakanaka M; Maeda N Glia; 1998 Oct; 24(2):198-215. PubMed ID: 9728766 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]