BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 3124141)

  • 1. Importance of the mitochondrial amino acid pool in the sensitivity of erythroid cells to chloramphenicol: role of glycine and serine.
    Abou-Khalil S; Abou-Khalil WH; Whitney PL; Yunis AA
    Pharmacology; 1987; 35(6):308-16. PubMed ID: 3124141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the mechanisms of erythroid cell sensitivity to chloramphenicol: studies on mitochondria isolated from erythroid and myeloid tumors.
    Abou-Khalil S; Salem Z; Abou-Khalil WH; Yunis AA
    Arch Biochem Biophys; 1981 Feb; 206(2):242-8. PubMed ID: 6939411
    [No Abstract]   [Full Text] [Related]  

  • 3. Atypical pattern of utilization of amino acids for mitochondrial protein synthesis in HeLa cells.
    Costantino P; Attardi G
    Proc Natl Acad Sci U S A; 1973 May; 70(5):1490-4. PubMed ID: 4514318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition by rhodamine 123 of protein synthesis in mitochondria of normal and cancer tissues.
    Abou-Khalil WH; Arimura GK; Yunis AA; Abou-Khalil S
    Biochem Biophys Res Commun; 1986 Jun; 137(2):759-65. PubMed ID: 2942140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid pool formation in Pseudomonas aeruginosa.
    Kay WW; Gronlund AF
    J Bacteriol; 1969 Jan; 97(1):282-91. PubMed ID: 4974394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial metabolism in normal, myeloid, and erythroid hyperplastic rabbit bone marrow: effect of chloramphenicol.
    Abou-Khalil S; Salem Z; Yunis AA
    Am J Hematol; 1980; 8(1):71-9. PubMed ID: 7395864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycine consumption and mitochondrial serine hydroxymethyltransferase in cancer cells: the heme connection.
    di Salvo ML; Contestabile R; Paiardini A; Maras B
    Med Hypotheses; 2013 May; 80(5):633-6. PubMed ID: 23474074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein synthesis in mitochondria. 3. On the effects of inhibitors on the incorporation of amino acids into protein by intact mitochondria and digitonin fractions.
    Kroon AM
    Biochim Biophys Acta; 1965 Oct; 108(2):275-84. PubMed ID: 5865510
    [No Abstract]   [Full Text] [Related]  

  • 9. The pleiotypic response to serine in erythroblastic leukemic cells.
    Galbraith RA; Buse MG
    Horm Metab Res; 1986 Mar; 18(3):173-6. PubMed ID: 3084370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anthelmintic efficacy of genistein, the active principle of Flemingia vestita (Fabaceae): alterations in the free amino acid pool and ammonia levels in the fluke, Fasciolopsis buski.
    Kar PK; Tandon V; Saha N
    Parasitol Int; 2004 Dec; 53(4):287-91. PubMed ID: 15464437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid incorporation by mitochondria of the adrenal cortex: the effect of chloramphenicol.
    Garren LD; Crocco RM
    Biochem Biophys Res Commun; 1967 Mar; 26(6):722-9. PubMed ID: 6030985
    [No Abstract]   [Full Text] [Related]  

  • 12. Stimulation by thyroxine of amino acid incorporation into mitochondria.
    Buchanan J; Tapley DF
    Endocrinology; 1966 Jul; 79(1):81-9. PubMed ID: 5917134
    [No Abstract]   [Full Text] [Related]  

  • 13. Transport of glycine, serine, and proline into spinach leaf mitochondria.
    Yu C; Claybrook DL; Huang AH
    Arch Biochem Biophys; 1983 Nov; 227(1):180-7. PubMed ID: 6416178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences of mitochondrial protein synthesis in vitro between tumour and normal tissues.
    Graffi A; Butschak G; Schneider EJ
    Biochem Biophys Res Commun; 1965 Dec; 21(5):418-23. PubMed ID: 5880516
    [No Abstract]   [Full Text] [Related]  

  • 15. In vivo incorporation of different amino acids into electrophoretically characteristic polypeptides synthesized by HeLa cell mitochondria.
    Ching E; Costantino P; Attardi G
    Biochem Biophys Res Commun; 1977 Nov; 79(2):451-60. PubMed ID: 588277
    [No Abstract]   [Full Text] [Related]  

  • 16. Amino acid metabolism in euryhaline bivalves: regulation of glycine accumulation in ribbed mussel gills.
    Ellis LL; Burcham JM; Paynter KT; Bishop SH
    J Exp Zool; 1985 Mar; 233(3):347-58. PubMed ID: 3919146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prominent glutamine oxidation activity in mitochondria of hematopoietic tumors.
    Abou-Khalil WH; Yunis AA; Abou-Khalil S
    Cancer Res; 1983 May; 43(5):1990-3. PubMed ID: 6572560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and efficacy of glycine, serine and threonine metabolism in potentiating kanamycin-mediated killing of Edwardsiella piscicida.
    Ye JZ; Lin XM; Cheng ZX; Su YB; Li WX; Ali FM; Zheng J; Peng B
    J Proteomics; 2018 Jul; 183():34-44. PubMed ID: 29753025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of L-monosodium glutamate and L-amino acid taste in rats.
    Delay ER; Mitzelfelt JD; Westburg AM; Gross N; Duran BL; Eschle BK
    Neuroscience; 2007 Aug; 148(1):266-78. PubMed ID: 17629624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of resting microglia in culture medium devoid of glycine and serine.
    Tanaka J; Toku K; Matsuda S; Sudo S; Fujita H; Sakanaka M; Maeda N
    Glia; 1998 Oct; 24(2):198-215. PubMed ID: 9728766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.