These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1553 related articles for article (PubMed ID: 31241894)

  • 1. Nanomedicines for Reactive Oxygen Species Mediated Approach: An Emerging Paradigm for Cancer Treatment.
    Kwon S; Ko H; You DG; Kataoka K; Park JH
    Acc Chem Res; 2019 Jul; 52(7):1771-1782. PubMed ID: 31241894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibody-modified Gold Nanobiostructures: Advancing Targeted Photodynamic Therapy for Improved Cancer Treatment.
    Alavi N; Maghami P; Pakdel AF; Rezaei M; Avan A
    Curr Pharm Des; 2023; 29(39):3103-3122. PubMed ID: 37990429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smart Nanoreactors for pH-Responsive Tumor Homing, Mitochondria-Targeting, and Enhanced Photodynamic-Immunotherapy of Cancer.
    Yang G; Xu L; Xu J; Zhang R; Song G; Chao Y; Feng L; Han F; Dong Z; Li B; Liu Z
    Nano Lett; 2018 Apr; 18(4):2475-2484. PubMed ID: 29565139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactivatable reactive oxygen species-sensitive nanoparticulate system for chemo-photodynamic therapy.
    Kim Y; Uthaman S; Pillarisetti S; Noh K; Huh KM; Park IK
    Acta Biomater; 2020 May; 108():273-284. PubMed ID: 32205212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Core-matched nanoassemblies for targeted co-delivery of chemotherapy and photosensitizer to treat drug-resistant cancer.
    Jiang D; Xu M; Pei Y; Huang Y; Chen Y; Ma F; Lu H; Chen J
    Acta Biomater; 2019 Apr; 88():406-421. PubMed ID: 30763634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Nanomedicine and Immunotherapy.
    Shi Y; Lammers T
    Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folate-mediated and pH-responsive chidamide-bound micelles encapsulating photosensitizers for tumor-targeting photodynamic therapy.
    Ma Z; Hu P; Guo C; Wang D; Zhang X; Chen M; Wang Q; Sun M; Zeng P; Lu F; Sun L; She L; Zhang H; Yao J; Yang F
    Int J Nanomedicine; 2019; 14():5527-5540. PubMed ID: 31413561
    [No Abstract]   [Full Text] [Related]  

  • 8. Redox Potential and ROS-Mediated Nanomedicines for Improving Cancer Therapy.
    Glass SB; Gonzalez-Fajardo L; Beringhs AO; Lu X
    Antioxid Redox Signal; 2019 Feb; 30(5):747-761. PubMed ID: 28990403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers.
    Sun CY; Cao Z; Zhang XJ; Sun R; Yu CS; Yang X
    Theranostics; 2018; 8(11):2939-2953. PubMed ID: 29896295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ROS-responsive self-assembly nanoplatform overcomes hypoxia for enhanced photodynamic therapy.
    Zhou Z; Han J; Lang P; Zhang M; Shu H; Zhang L; Huang S
    Biomater Sci; 2024 Sep; 12(19):5105-5114. PubMed ID: 39221610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer.
    Zhen S; Yi X; Zhao Z; Lou X; Xia F; Tang BZ
    Biomaterials; 2019 Oct; 218():119330. PubMed ID: 31301577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. P-glycoprotein-targeted photodynamic therapy boosts cancer nanomedicine by priming tumor microenvironment.
    Mao C; Li F; Zhao Y; Debinski W; Ming X
    Theranostics; 2018; 8(22):6274-6290. PubMed ID: 30613297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment.
    Choi J; Sun IC; Sook Hwang H; Yeol Yoon H; Kim K
    Adv Drug Deliv Rev; 2022 Jul; 186():114344. PubMed ID: 35580813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broaden sources and reduce expenditure: Tumor-specific transformable oxidative stress nanoamplifier enabling economized photodynamic therapy for reinforced oxidation therapy.
    Xu X; Huang B; Zeng Z; Chen J; Huang Z; Guan Z; Chen M; Huang Y; Zhao C
    Theranostics; 2020; 10(23):10513-10530. PubMed ID: 32929363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy.
    Zhou Z; Song J; Nie L; Chen X
    Chem Soc Rev; 2016 Nov; 45(23):6597-6626. PubMed ID: 27722328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Titania-coated 2D gold nanoplates as nanoagents for synergistic photothermal/sonodynamic therapy in the second near-infrared window.
    Gao F; He G; Yin H; Chen J; Liu Y; Lan C; Zhang S; Yang B
    Nanoscale; 2019 Jan; 11(5):2374-2384. PubMed ID: 30667014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacancy Engineering to Regulate Photocatalytic Activity of Polymer Photosensitizers for Amplifying Photodynamic Therapy against Hypoxic Tumors.
    Bai J; Peng C; Lv W; Liu J; Hei Y; Bo X
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39055-39065. PubMed ID: 34433248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titaniumdioxide mediated sonophotodynamic therapy against prostate cancer.
    Aksel M; Kesmez Ö; Yavaş A; Bilgin MD
    J Photochem Photobiol B; 2021 Dec; 225():112333. PubMed ID: 34688979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inorganic chemoreactive nanosonosensitzers with unique physiochemical properties and structural features for versatile sonodynamic nanotherapies.
    Dong C; Hu H; Sun L; Chen Y
    Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33725684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorinated polymeric micelles to overcome hypoxia and enhance photodynamic cancer therapy.
    Wang Q; Li JM; Yu H; Deng K; Zhou W; Wang CX; Zhang Y; Li KH; Zhuo RX; Huang SW
    Biomater Sci; 2018 Oct; 6(11):3096-3107. PubMed ID: 30306153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 78.