These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 31241916)
41. Silencing TTK expression inhibits the proliferation and progression of prostate cancer. Chen S; Wang J; Wang L; Peng H; Xiao L; Li C; Lin D; Yang K Exp Cell Res; 2019 Dec; 385(1):111669. PubMed ID: 31605696 [TBL] [Abstract][Full Text] [Related]
42. [Let-7 miRNA silencing promotes Kaposi's sarcoma-associated herpesvirus lytic replication via activating mitogen-activated protein kinase kinase kinase kinase 4 and its downstream factors]. Zhang JX; Tan XH; Yuan Z; Li YH; Qi Y; Nan X; Qi MJ; Gao H; Lian FZ; Yang L Zhonghua Zhong Liu Za Zhi; 2016 Jul; 38(7):485-91. PubMed ID: 27531260 [TBL] [Abstract][Full Text] [Related]
43. Characterization of the ERG-regulated Kinome in Prostate Cancer Identifies TNIK as a Potential Therapeutic Target. Lee RS; Zhang L; Berger A; Lawrence MG; Song J; Niranjan B; Davies RG; Lister NL; Sandhu SK; Rubin MA; Risbridger GP; Taylor RA; Rickman DS; Horvath LG; Daly RJ Neoplasia; 2019 Apr; 21(4):389-400. PubMed ID: 30901730 [TBL] [Abstract][Full Text] [Related]
45. A targeted quantitative proteomics strategy for global kinome profiling of cancer cells and tissues. Xiao Y; Guo L; Wang Y Mol Cell Proteomics; 2014 Apr; 13(4):1065-75. PubMed ID: 24520089 [TBL] [Abstract][Full Text] [Related]
46. Proteomics approach to identify novel metastatic bone markers from the secretome of PC-3 prostate cancer cells. Sung E; Kwon OK; Lee JM; Lee S Electrophoresis; 2017 Oct; 38(20):2638-2645. PubMed ID: 28627741 [TBL] [Abstract][Full Text] [Related]
47. Antitumor effects of the novel quinazolinone MJ-33: inhibition of metastasis through the MAPK, AKT, NF-κB and AP-1 signaling pathways in DU145 human prostate cancer cells. Hour MJ; Tsai SC; Wu HC; Lin MW; Chung JG; Wu JB; Chiang JH; Tsuzuki M; Yang JS Int J Oncol; 2012 Oct; 41(4):1513-9. PubMed ID: 22825655 [TBL] [Abstract][Full Text] [Related]
48. Ectopic expression of CC chemokine receptor 7 promotes prostate cancer cells metastasis via Notch1 signaling. Du R; Tang G; Tang Z; Kuang Y J Cell Biochem; 2019 Jun; 120(6):9639-9647. PubMed ID: 30548287 [TBL] [Abstract][Full Text] [Related]
49. Lemur Tyrosine Kinase-3 Suppresses Growth of Prostate Cancer Via the AKT and MAPK Signaling Pathways. Sun P; Sun X; Zhao W; Ren M; Zhang C; Wang Z; Xu W Cell Physiol Biochem; 2017; 42(6):2582-2592. PubMed ID: 28848113 [TBL] [Abstract][Full Text] [Related]
50. Clinical applications of expression profiling and proteomics in prostate cancer. Masters JR Anticancer Res; 2007; 27(3A):1273-6. PubMed ID: 17593619 [TBL] [Abstract][Full Text] [Related]
51. Galeterone and VNPT55 disrupt Mnk-eIF4E to inhibit prostate cancer cell migration and invasion. Kwegyir-Afful AK; Bruno RD; Purushottamachar P; Murigi FN; Njar VC FEBS J; 2016 Nov; 283(21):3898-3918. PubMed ID: 27618366 [TBL] [Abstract][Full Text] [Related]
52. PI3K-AKT-mTOR pathway is dominant over androgen receptor signaling in prostate cancer cells. Kaarbø M; Mikkelsen OL; Malerød L; Qu S; Lobert VH; Akgul G; Halvorsen T; Maelandsmo GM; Saatcioglu F Cell Oncol; 2010; 32(1-2):11-27. PubMed ID: 20203370 [TBL] [Abstract][Full Text] [Related]
54. Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation. Kobayashi T; Shimizu Y; Terada N; Yamasaki T; Nakamura E; Toda Y; Nishiyama H; Kamoto T; Ogawa O; Inoue T Prostate; 2010 Jun; 70(8):866-74. PubMed ID: 20127734 [TBL] [Abstract][Full Text] [Related]
55. The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Liu W; Yue F; Zheng M; Merlot A; Bae DH; Huang M; Lane D; Jansson P; Lui GY; Richardson V; Sahni S; Kalinowski D; Kovacevic Z; Richardson DR Oncotarget; 2015 Apr; 6(11):8851-74. PubMed ID: 25860930 [TBL] [Abstract][Full Text] [Related]
56. Disruption of the c-Myc/miR-200b-3p/PRDX2 regulatory loop enhances tumor metastasis and chemotherapeutic resistance in colorectal cancer. Lv Z; Wei J; You W; Wang R; Shang J; Xiong Y; Yang H; Yang X; Fu Z J Transl Med; 2017 Dec; 15(1):257. PubMed ID: 29258530 [TBL] [Abstract][Full Text] [Related]
57. Discoidin domain receptor 2 facilitates prostate cancer bone metastasis via regulating parathyroid hormone-related protein. Yan Z; Jin S; Wei Z; Huilian H; Zhanhai Y; Yue T; Juan L; Jing L; Libo Y; Xu L Biochim Biophys Acta; 2014 Sep; 1842(9):1350-63. PubMed ID: 24787381 [TBL] [Abstract][Full Text] [Related]
58. Proteomic Comparison and MRM-Based Comparative Analysis of Metabolites Reveal Metabolic Shift in Human Prostate Cancer Cell Lines. Shu Q; Cai T; Chen X; Zhu HH; Xue P; Zhu N; Xie Z; Wei S; Zhang Q; Niu L; Gao WQ; Yang F J Proteome Res; 2015 Aug; 14(8):3390-402. PubMed ID: 26147661 [TBL] [Abstract][Full Text] [Related]
59. Saposin C stimulates growth and invasion, activates p42/44 and SAPK/JNK signaling pathways of MAPK and upregulates uPA/uPAR expression in prostate cancer and stromal cells. Koochekpour S; Sartor O; Hiraiwa M; Lee TJ; Rayford W; Remmel N; Sandhoff K; Minokadeh A; Patten DY Asian J Androl; 2005 Jun; 7(2):147-58. PubMed ID: 15897971 [TBL] [Abstract][Full Text] [Related]
60. Gonadotropin-releasing hormone induces apoptosis of prostate cancer cells: role of c-Jun NH2-terminal kinase, protein kinase B, and extracellular signal-regulated kinase pathways. Kraus S; Levy G; Hanoch T; Naor Z; Seger R Cancer Res; 2004 Aug; 64(16):5736-44. PubMed ID: 15313914 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]