These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 31242063)

  • 1. Interactions between motor exploration and reinforcement learning.
    Uehara S; Mawase F; Therrien AS; Cherry-Allen KM; Celnik P
    J Neurophysiol; 2019 Aug; 122(2):797-808. PubMed ID: 31242063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clustering analysis of movement kinematics in reinforcement learning.
    Sidarta A; Komar J; Ostry DJ
    J Neurophysiol; 2022 Feb; 127(2):341-353. PubMed ID: 34936514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatosensory working memory in human reinforcement-based motor learning.
    Sidarta A; van Vugt FT; Ostry DJ
    J Neurophysiol; 2018 Dec; 120(6):3275-3286. PubMed ID: 30354856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Somatic and Reinforcement-Based Plasticity in the Initial Stages of Human Motor Learning.
    Sidarta A; Vahdat S; Bernardi NF; Ostry DJ
    J Neurosci; 2016 Nov; 36(46):11682-11692. PubMed ID: 27852776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise.
    Therrien AS; Wolpert DM; Bastian AJ
    Brain; 2016 Jan; 139(Pt 1):101-14. PubMed ID: 26626368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor Learning Enhances Use-Dependent Plasticity.
    Mawase F; Uehara S; Bastian AJ; Celnik P
    J Neurosci; 2017 Mar; 37(10):2673-2685. PubMed ID: 28143961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement-based processes actively regulate motor exploration along redundant solution manifolds.
    Roth AM; Calalo JA; Lokesh R; Sullivan SR; Grill S; Jeka JJ; van der Kooij K; Carter MJ; Cashaback JGA
    Proc Biol Sci; 2023 Oct; 290(2009):20231475. PubMed ID: 37848061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Null effects of levodopa on reward- and error-based motor adaptation, savings, and anterograde interference.
    Palidis DJ; McGregor HR; Vo A; MacDonald PA; Gribble PL
    J Neurophysiol; 2021 Jul; 126(1):47-67. PubMed ID: 34038228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence learning is driven by improvements in motor planning.
    Ariani G; Diedrichsen J
    J Neurophysiol; 2019 Jun; 121(6):2088-2100. PubMed ID: 30969809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing Motor Noise Impairs Reinforcement Learning in Healthy Individuals.
    Therrien AS; Wolpert DM; Bastian AJ
    eNeuro; 2018; 5(3):. PubMed ID: 30105298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 24-h savings of adaptation to novel movement dynamics initially reflects the recall of previous performance.
    Nguyen KP; Zhou W; McKenna E; Colucci-Chang K; Bray LCJ; Hosseini EA; Alhussein L; Rezazad M; Joiner WM
    J Neurophysiol; 2019 Sep; 122(3):933-946. PubMed ID: 31291156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcement Signaling Can Be Used to Reduce Elements of Cerebellar Reaching Ataxia.
    Therrien AS; Statton MA; Bastian AJ
    Cerebellum; 2021 Feb; 20(1):62-73. PubMed ID: 32880848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficits in positive reinforcement learning and uncertainty-driven exploration are associated with distinct aspects of negative symptoms in schizophrenia.
    Strauss GP; Frank MJ; Waltz JA; Kasanova Z; Herbener ES; Gold JM
    Biol Psychiatry; 2011 Mar; 69(5):424-31. PubMed ID: 21168124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of reward and punishment on reinforcement-based motor learning and generalization.
    Yin C; Li B; Gao T
    J Neurophysiol; 2023 Nov; 130(5):1150-1161. PubMed ID: 37791387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OPTIMAL practice conditions enhance the benefits of gradually increasing error opportunities on retention of a stepping sequence task.
    Levac D; Driscoll K; Galvez J; Mercado K; O'Neil L
    Hum Mov Sci; 2017 Dec; 56(Pt B):129-138. PubMed ID: 29128736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning Similar Actions by Reinforcement or Sensory-Prediction Errors Rely on Distinct Physiological Mechanisms.
    Uehara S; Mawase F; Celnik P
    Cereb Cortex; 2018 Oct; 28(10):3478-3490. PubMed ID: 28968827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overcoming motor "forgetting" through reinforcement of learned actions.
    Shmuelof L; Huang VS; Haith AM; Delnicki RJ; Mazzoni P; Krakauer JW
    J Neurosci; 2012 Oct; 32(42):14617-21. PubMed ID: 23077047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in the amplitude and burst rate of beta oscillations impair reward-dependent motor learning in anxiety.
    Sporn S; Hein T; Herrojo Ruiz M
    Elife; 2020 May; 9():. PubMed ID: 32423530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advantages of melodic over rhythmic movement sonification in bimanual motor skill learning.
    Dyer JF; Stapleton P; Rodger MWM
    Exp Brain Res; 2017 Oct; 235(10):3129-3140. PubMed ID: 28748311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frontal theta reflects uncertainty and unexpectedness during exploration and exploitation.
    Cavanagh JF; Figueroa CM; Cohen MX; Frank MJ
    Cereb Cortex; 2012 Nov; 22(11):2575-86. PubMed ID: 22120491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.