These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 31242238)
1. Feature selection and transformation by machine learning reduce variable numbers and improve prediction for heart failure readmission or death. Awan SE; Bennamoun M; Sohel F; Sanfilippo FM; Chow BJ; Dwivedi G PLoS One; 2019; 14(6):e0218760. PubMed ID: 31242238 [TBL] [Abstract][Full Text] [Related]
2. Machine learning-based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics. Awan SE; Bennamoun M; Sohel F; Sanfilippo FM; Dwivedi G ESC Heart Fail; 2019 Apr; 6(2):428-435. PubMed ID: 30810291 [TBL] [Abstract][Full Text] [Related]
3. Risk prediction for 30-day heart failure-specific readmission or death after discharge: Data from the Korean Acute Heart Failure (KorAHF) registry. Lim NK; Lee SE; Lee HY; Cho HJ; Choe WS; Kim H; Choi JO; Jeon ES; Kim MS; Kim JJ; Hwang KK; Chae SC; Baek SH; Kang SM; Choi DJ; Yoo BS; Kim KH; Cho MC; Oh BH; Park HY J Cardiol; 2019 Feb; 73(2):108-113. PubMed ID: 30360893 [TBL] [Abstract][Full Text] [Related]
4. PREDICTIVE MODELING OF HOSPITAL READMISSION RATES USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE LEARNING: A CASE-STUDY USING MOUNT SINAI HEART FAILURE COHORT. Shameer K; Johnson KW; Yahi A; Miotto R; Li LI; Ricks D; Jebakaran J; Kovatch P; Sengupta PP; Gelijns S; Moskovitz A; Darrow B; David DL; Kasarskis A; Tatonetti NP; Pinney S; Dudley JT Pac Symp Biocomput; 2017; 22():276-287. PubMed ID: 27896982 [TBL] [Abstract][Full Text] [Related]
5. Using machine learning to predict paediatric 30-day unplanned hospital readmissions: a case-control retrospective analysis of medical records, including written discharge documentation. Zhou H; Albrecht MA; Roberts PA; Porter P; Della PR Aust Health Rev; 2021 Jun; 45(3):328-337. PubMed ID: 33840419 [TBL] [Abstract][Full Text] [Related]
6. SHAP based predictive modeling for 1 year all-cause readmission risk in elderly heart failure patients: feature selection and model interpretation. Luo H; Xiang C; Zeng L; Li S; Mei X; Xiong L; Liu Y; Wen C; Cui Y; Du L; Zhou Y; Wang K; Li L; Liu Z; Wu Q; Pu J; Yue R Sci Rep; 2024 Jul; 14(1):17728. PubMed ID: 39085442 [TBL] [Abstract][Full Text] [Related]
7. The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study. Soliman A; Agvall B; Etminani K; Hamed O; Lingman M J Med Internet Res; 2023 Oct; 25():e46934. PubMed ID: 37889530 [TBL] [Abstract][Full Text] [Related]
8. Predicting the risk of unplanned readmission or death within 30 days of discharge after a heart failure hospitalization. Au AG; McAlister FA; Bakal JA; Ezekowitz J; Kaul P; van Walraven C Am Heart J; 2012 Sep; 164(3):365-72. PubMed ID: 22980303 [TBL] [Abstract][Full Text] [Related]
9. A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data. Golas SB; Shibahara T; Agboola S; Otaki H; Sato J; Nakae T; Hisamitsu T; Kojima G; Felsted J; Kakarmath S; Kvedar J; Jethwani K BMC Med Inform Decis Mak; 2018 Jun; 18(1):44. PubMed ID: 29929496 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Machine Learning Algorithms for Predicting Hospital Readmissions and Worsening Heart Failure Events in Patients With Heart Failure With Reduced Ejection Fraction: Modeling Study. Ru B; Tan X; Liu Y; Kannapur K; Ramanan D; Kessler G; Lautsch D; Fonarow G JMIR Form Res; 2023 Apr; 7():e41775. PubMed ID: 37067873 [TBL] [Abstract][Full Text] [Related]
11. Validation of the Readmission Risk Score in Heart Failure Patients at a Tertiary Hospital. Sudhakar S; Zhang W; Kuo YF; Alghrouz M; Barbajelata A; Sharma G J Card Fail; 2015 Nov; 21(11):885-91. PubMed ID: 26209002 [TBL] [Abstract][Full Text] [Related]
12. Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention. Zack CJ; Senecal C; Kinar Y; Metzger Y; Bar-Sinai Y; Widmer RJ; Lennon R; Singh M; Bell MR; Lerman A; Gulati R JACC Cardiovasc Interv; 2019 Jul; 12(14):1304-1311. PubMed ID: 31255564 [TBL] [Abstract][Full Text] [Related]
13. An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data. Amarasingham R; Moore BJ; Tabak YP; Drazner MH; Clark CA; Zhang S; Reed WG; Swanson TS; Ma Y; Halm EA Med Care; 2010 Nov; 48(11):981-8. PubMed ID: 20940649 [TBL] [Abstract][Full Text] [Related]
14. Incorporating patient-centered factors into heart failure readmission risk prediction: A mixed-methods study. Ahmad FS; French B; Bowles KH; Sevilla-Cazes J; Jaskowiak-Barr A; Gallagher TR; Kangovi S; Goldberg LR; Barg FK; Kimmel SE Am Heart J; 2018 Jun; 200():75-82. PubMed ID: 29898852 [TBL] [Abstract][Full Text] [Related]
15. How Good Is Machine Learning in Predicting All-Cause 30-Day Hospital Readmission? Evidence From Administrative Data. Li Q; Yao X; Échevin D Value Health; 2020 Oct; 23(10):1307-1315. PubMed ID: 33032774 [TBL] [Abstract][Full Text] [Related]
16. Neural networks versus Logistic regression for 30 days all-cause readmission prediction. Allam A; Nagy M; Thoma G; Krauthammer M Sci Rep; 2019 Jun; 9(1):9277. PubMed ID: 31243311 [TBL] [Abstract][Full Text] [Related]
17. Validation of Predictive Score of 30-Day Hospital Readmission or Death in Patients With Heart Failure. Huynh Q; Negishi K; De Pasquale CG; Hare JL; Leung D; Stanton T; Marwick TH Am J Cardiol; 2018 Feb; 121(3):322-329. PubMed ID: 29248155 [TBL] [Abstract][Full Text] [Related]
18. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches. Frizzell JD; Liang L; Schulte PJ; Yancy CW; Heidenreich PA; Hernandez AF; Bhatt DL; Fonarow GC; Laskey WK JAMA Cardiol; 2017 Feb; 2(2):204-209. PubMed ID: 27784047 [TBL] [Abstract][Full Text] [Related]
19. Mild cognitive impairment predicts death and readmission within 30days of discharge for heart failure. Huynh QL; Negishi K; Blizzard L; Saito M; De Pasquale CG; Hare JL; Leung D; Stanton T; Sanderson K; Venn AJ; Marwick TH Int J Cardiol; 2016 Oct; 221():212-7. PubMed ID: 27404677 [TBL] [Abstract][Full Text] [Related]
20. Predicting 30-day Hospital Readmission with Publicly Available Administrative Database. A Conditional Logistic Regression Modeling Approach. Zhu K; Lou Z; Zhou J; Ballester N; Kong N; Parikh P Methods Inf Med; 2015; 54(6):560-7. PubMed ID: 26548400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]