BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31242476)

  • 1. Thermoelectric properties of gapped bilayer graphene.
    Suszalski D; Rut G; Rycerz A
    J Phys Condens Matter; 2019 Oct; 31(41):415501. PubMed ID: 31242476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low lattice thermal conductivity and excellent thermoelectric behavior in Li
    Yang X; Dai Z; Zhao Y; Liu J; Meng S
    J Phys Condens Matter; 2018 Oct; 30(42):425401. PubMed ID: 30168447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two functionals approach in DFT for the prediction of thermoelectric properties of Fe
    Shastri SS; Pandey SK
    J Phys Condens Matter; 2019 Oct; 31(43):435701. PubMed ID: 31252427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Thermoelectric Performance of As-Grown Suspended Graphene Nanoribbons.
    Li QY; Feng T; Okita W; Komori Y; Suzuki H; Kato T; Kaneko T; Ikuta T; Ruan X; Takahashi K
    ACS Nano; 2019 Aug; 13(8):9182-9189. PubMed ID: 31411858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons.
    Deng S; Li L; Guy OJ; Zhang Y
    Phys Chem Chem Phys; 2019 Aug; 21(33):18161-18169. PubMed ID: 31389445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of thermoelectricity in Mg
    Farris R; Maccioni MB; Filippetti A; Fiorentini V
    J Phys Condens Matter; 2019 Feb; 31(6):065702. PubMed ID: 30524117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.
    Chien YY; Yuan H; Wang CR; Lee WL
    Sci Rep; 2016 Feb; 6():20402. PubMed ID: 26852799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thickness and defect dependent electronic, optical and thermoelectric features of [Formula: see text].
    Ozdemir I; Holleitner AW; Kastl C; Aktürk OÜ
    Sci Rep; 2022 Jul; 12(1):12756. PubMed ID: 35882909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of Lifshitz Transition in the Thermoelectric Power of Ultrahigh-Mobility Bilayer Graphene.
    Jayaraman A; Hsieh K; Ghawri B; Mahapatra PS; Watanabe K; Taniguchi T; Ghosh A
    Nano Lett; 2021 Feb; 21(3):1221-1227. PubMed ID: 33502864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoelectric properties of 1 T monolayer pristine and Janus Pd dichalcogenides.
    Moujaes EA; Diery WA
    J Phys Condens Matter; 2019 Nov; 31(45):455502. PubMed ID: 31341098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient mechanism for enhancing the thermoelectricity of nanoribbons by blocking phonon transport in 2D materials.
    Liu YY; Zeng YJ; Jia PZ; Cao XH; Jiang X; Chen KQ
    J Phys Condens Matter; 2018 Jul; 30(27):275701. PubMed ID: 29799436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exchange and electric fields enhanced spin thermoelectric performance of germanene nano-ribbon.
    Zheng J; Chi F; Guo Y
    J Phys Condens Matter; 2015 Jul; 27(29):295302. PubMed ID: 26139695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain-induced enhancement in the electronic and thermal transport properties of the tin sulphide bilayer.
    Nag S; Singh R; Kumar R
    Phys Chem Chem Phys; 2021 Dec; 24(1):211-221. PubMed ID: 34878461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling thermoelectric transport in III-V nanowires using a Boltzmann transport approach: a review.
    Ghukasyan A; LaPierre RR
    Nanotechnology; 2021 Jan; 32(4):042001. PubMed ID: 33111709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear and nonlinear thermoelectric transport in a quantum spin Hall insulators coupled with a nanomagnet.
    Wang R; Liao H; Song CY; Tang GH; Yang NX
    Sci Rep; 2022 Jul; 12(1):12048. PubMed ID: 35835824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations of thermoelectric performance by electric fields in bilayer MX
    Wang RN; Dong GY; Wang SF; Fu GS; Wang JL
    Phys Chem Chem Phys; 2017 Feb; 19(8):5797-5805. PubMed ID: 28176989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles investigation of organic semiconductors for thermoelectric applications.
    Wang D; Tang L; Long M; Shuai Z
    J Chem Phys; 2009 Dec; 131(22):224704. PubMed ID: 20001073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of the thermoelectric properties in bilayer graphene structures induced by Fano resonances.
    Briones-Torres JA; Pérez-Álvarez R; Molina-Valdovinos S; Rodríguez-Vargas I
    Sci Rep; 2021 Jul; 11(1):13872. PubMed ID: 34230518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoelectric characteristics of X[Formula: see text]YH[Formula: see text] monolayers (X=Si, Ge; Y=P, As, Sb, Bi): a first-principles study.
    Mohebpour MA; Mozvashi SM; Vishkayi SI; Tagani MB
    Sci Rep; 2021 Dec; 11(1):23840. PubMed ID: 34903762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significantly Enhanced Thermoelectric Performance of Graphene through Atomic-Scale Defect Engineering via Mobile Hot-Wire Chemical Vapor Deposition Systems.
    Choi M; Novak TG; Byen J; Lee H; Baek J; Hong S; Kim K; Song J; Shin H; Jeon S
    ACS Appl Mater Interfaces; 2021 May; 13(20):24304-24313. PubMed ID: 33983698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.