These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Low lattice thermal conductivity and excellent thermoelectric behavior in Li Yang X; Dai Z; Zhao Y; Liu J; Meng S J Phys Condens Matter; 2018 Oct; 30(42):425401. PubMed ID: 30168447 [TBL] [Abstract][Full Text] [Related]
3. Two functionals approach in DFT for the prediction of thermoelectric properties of Fe Shastri SS; Pandey SK J Phys Condens Matter; 2019 Oct; 31(43):435701. PubMed ID: 31252427 [TBL] [Abstract][Full Text] [Related]
5. Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons. Deng S; Li L; Guy OJ; Zhang Y Phys Chem Chem Phys; 2019 Aug; 21(33):18161-18169. PubMed ID: 31389445 [TBL] [Abstract][Full Text] [Related]
6. Theory of thermoelectricity in Mg Farris R; Maccioni MB; Filippetti A; Fiorentini V J Phys Condens Matter; 2019 Feb; 31(6):065702. PubMed ID: 30524117 [TBL] [Abstract][Full Text] [Related]
7. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating. Chien YY; Yuan H; Wang CR; Lee WL Sci Rep; 2016 Feb; 6():20402. PubMed ID: 26852799 [TBL] [Abstract][Full Text] [Related]
8. Thickness and defect dependent electronic, optical and thermoelectric features of [Formula: see text]. Ozdemir I; Holleitner AW; Kastl C; Aktürk OÜ Sci Rep; 2022 Jul; 12(1):12756. PubMed ID: 35882909 [TBL] [Abstract][Full Text] [Related]
9. Evidence of Lifshitz Transition in the Thermoelectric Power of Ultrahigh-Mobility Bilayer Graphene. Jayaraman A; Hsieh K; Ghawri B; Mahapatra PS; Watanabe K; Taniguchi T; Ghosh A Nano Lett; 2021 Feb; 21(3):1221-1227. PubMed ID: 33502864 [TBL] [Abstract][Full Text] [Related]
10. Thermoelectric properties of 1 T monolayer pristine and Janus Pd dichalcogenides. Moujaes EA; Diery WA J Phys Condens Matter; 2019 Nov; 31(45):455502. PubMed ID: 31341098 [TBL] [Abstract][Full Text] [Related]
11. An efficient mechanism for enhancing the thermoelectricity of nanoribbons by blocking phonon transport in 2D materials. Liu YY; Zeng YJ; Jia PZ; Cao XH; Jiang X; Chen KQ J Phys Condens Matter; 2018 Jul; 30(27):275701. PubMed ID: 29799436 [TBL] [Abstract][Full Text] [Related]
12. Exchange and electric fields enhanced spin thermoelectric performance of germanene nano-ribbon. Zheng J; Chi F; Guo Y J Phys Condens Matter; 2015 Jul; 27(29):295302. PubMed ID: 26139695 [TBL] [Abstract][Full Text] [Related]
13. Strain-induced enhancement in the electronic and thermal transport properties of the tin sulphide bilayer. Nag S; Singh R; Kumar R Phys Chem Chem Phys; 2021 Dec; 24(1):211-221. PubMed ID: 34878461 [TBL] [Abstract][Full Text] [Related]
14. Modelling thermoelectric transport in III-V nanowires using a Boltzmann transport approach: a review. Ghukasyan A; LaPierre RR Nanotechnology; 2021 Jan; 32(4):042001. PubMed ID: 33111709 [TBL] [Abstract][Full Text] [Related]
15. Linear and nonlinear thermoelectric transport in a quantum spin Hall insulators coupled with a nanomagnet. Wang R; Liao H; Song CY; Tang GH; Yang NX Sci Rep; 2022 Jul; 12(1):12048. PubMed ID: 35835824 [TBL] [Abstract][Full Text] [Related]
16. Variations of thermoelectric performance by electric fields in bilayer MX Wang RN; Dong GY; Wang SF; Fu GS; Wang JL Phys Chem Chem Phys; 2017 Feb; 19(8):5797-5805. PubMed ID: 28176989 [TBL] [Abstract][Full Text] [Related]
17. First-principles investigation of organic semiconductors for thermoelectric applications. Wang D; Tang L; Long M; Shuai Z J Chem Phys; 2009 Dec; 131(22):224704. PubMed ID: 20001073 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of the thermoelectric properties in bilayer graphene structures induced by Fano resonances. Briones-Torres JA; Pérez-Álvarez R; Molina-Valdovinos S; Rodríguez-Vargas I Sci Rep; 2021 Jul; 11(1):13872. PubMed ID: 34230518 [TBL] [Abstract][Full Text] [Related]
19. Thermoelectric characteristics of X[Formula: see text]YH[Formula: see text] monolayers (X=Si, Ge; Y=P, As, Sb, Bi): a first-principles study. Mohebpour MA; Mozvashi SM; Vishkayi SI; Tagani MB Sci Rep; 2021 Dec; 11(1):23840. PubMed ID: 34903762 [TBL] [Abstract][Full Text] [Related]
20. Significantly Enhanced Thermoelectric Performance of Graphene through Atomic-Scale Defect Engineering via Mobile Hot-Wire Chemical Vapor Deposition Systems. Choi M; Novak TG; Byen J; Lee H; Baek J; Hong S; Kim K; Song J; Shin H; Jeon S ACS Appl Mater Interfaces; 2021 May; 13(20):24304-24313. PubMed ID: 33983698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]