BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 31242574)

  • 21. Toward fiber-, paper-, and foam-based flexible solid-state supercapacitors: electrode materials and device designs.
    Liang J; Jiang C; Wu W
    Nanoscale; 2019 Apr; 11(15):7041-7061. PubMed ID: 30931460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lignocellulosic Biomass for the Synthesis of Nanocellulose and Its Eco-Friendly Advanced Applications.
    Gupta GK; Shukla P
    Front Chem; 2020; 8():601256. PubMed ID: 33425858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage.
    Chen W; Yu H; Lee SY; Wei T; Li J; Fan Z
    Chem Soc Rev; 2018 Apr; 47(8):2837-2872. PubMed ID: 29561005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conductive Hydrogels as Smart Materials for Flexible Electronic Devices.
    Rong Q; Lei W; Liu M
    Chemistry; 2018 Nov; 24(64):16930-16943. PubMed ID: 29786914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers.
    Zhao Z; Xia K; Hou Y; Zhang Q; Ye Z; Lu J
    Chem Soc Rev; 2021 Nov; 50(22):12702-12743. PubMed ID: 34643198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and characterization of highly conductive lignin aerogel based on tunicate nanocellulose framework.
    Lin W; Wu S; Han S; Xie J; He H; Zou Q; Xu D; Ning D; Mondal AK; Huang F
    Int J Biol Macromol; 2023 Jul; 242(Pt 3):125010. PubMed ID: 37217060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Pine-Needle-Inspired Structure of Zinc Oxide Nanorods Grown on Electrospun Nanofibers for High-Performance Flexible Supercapacitors.
    Sami SK; Siddiqui S; Shrivastava S; Lee NE; Chung CH
    Small; 2017 Dec; 13(46):. PubMed ID: 29045044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.
    Jin Y; Chen H; Chen M; Liu N; Li Q
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Progress on Flexible and Wearable Supercapacitors.
    Xue Q; Sun J; Huang Y; Zhu M; Pei Z; Li H; Wang Y; Li N; Zhang H; Zhi C
    Small; 2017 Dec; 13(45):. PubMed ID: 28941073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films.
    Liu Y; Weng B; Razal JM; Xu Q; Zhao C; Hou Y; Seyedin S; Jalili R; Wallace GG; Chen J
    Sci Rep; 2015 Nov; 5():17045. PubMed ID: 26586106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites - A review.
    Agate S; Joyce M; Lucia L; Pal L
    Carbohydr Polym; 2018 Oct; 198():249-260. PubMed ID: 30092997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alternative proton exchange membrane based on a bicomponent anionic nanocellulose system.
    Brito Dos Santos F; Kaschuk J; Banvillet G; Jalaee A; Rojas OJ; Foster EJ
    Carbohydr Polym; 2024 Sep; 340():122299. PubMed ID: 38858022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications.
    Wang Z; Tammela P; Zhang P; Huo J; Ericson F; Strømme M; Nyholm L
    Nanoscale; 2014 Nov; 6(21):13068-75. PubMed ID: 25248090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Situ Growth of a High-Performance All-Solid-State Electrode for Flexible Supercapacitors Based on a PANI/CNT/EVA Composite.
    Guan X; Kong D; Huang Q; Cao L; Zhang P; Lin H; Lin Z; Yuan H
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanocellulose as a promising substrate for advanced sensors and their applications.
    Li S; Chen H; Liu X; Li P; Wu W
    Int J Biol Macromol; 2022 Oct; 218():473-487. PubMed ID: 35870627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes.
    Zhao D; Zhang Q; Chen W; Yi X; Liu S; Wang Q; Liu Y; Li J; Li X; Yu H
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13213-13222. PubMed ID: 28349683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A facile preparation of polyaniline/cellulose hydrogels for all-in-one flexible supercapacitor with remarkable enhanced performance.
    Gong Q; Li Y; Liu X; Xia Z; Yang Y
    Carbohydr Polym; 2020 Oct; 245():116611. PubMed ID: 32718658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanically Enhanced Nanocrystalline Cellulose/Reduced Graphene Oxide/Polyethylene Glycol Electrically Conductive Composite Film.
    Xie P; Ge Y; Wang Y; Zhou J; Miao Y; Liu Z
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanocellulose-based electrodes and separator toward sustainable and flexible all-solid-state supercapacitor.
    Ding Z; Yang X; Tang Y
    Int J Biol Macromol; 2023 Feb; 228():467-477. PubMed ID: 36572083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellulose Nanofiber @ Conductive Metal-Organic Frameworks for High-Performance Flexible Supercapacitors.
    Zhou S; Kong X; Zheng B; Huo F; Strømme M; Xu C
    ACS Nano; 2019 Aug; 13(8):9578-9586. PubMed ID: 31294960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.