BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 31242574)

  • 41. Elastic Fiber Supercapacitors for Wearable Energy Storage.
    Qin S; Seyedin S; Zhang J; Wang Z; Yang F; Liu Y; Chen J; Razal JM
    Macromol Rapid Commun; 2018 Jul; 39(13):e1800103. PubMed ID: 29774612
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A flexible and conductive metallic paper-based current collector with energy storage capability in supercapacitor electrodes.
    Li Y; Wang Q; Wang Y; Bai M; Shao J; Ji H; Feng H; Zhang J; Ma X; Zhao W
    Dalton Trans; 2019 Jun; 48(22):7659-7665. PubMed ID: 31049511
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MnO
    Zhai T; Lu X; Wang F; Xia H; Tong Y
    Nanoscale Horiz; 2016 Mar; 1(2):109-124. PubMed ID: 32260633
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Effect of Mechanochemical Treatment of the Cellulose on Characteristics of Nanocellulose Films.
    Barbash VA; Yaschenko OV; Alushkin SV; Kondratyuk AS; Posudievsky OY; Koshechko VG
    Nanoscale Res Lett; 2016 Dec; 11(1):410. PubMed ID: 27644236
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development and applications of transparent conductive nanocellulose paper.
    Li S; Lee PS
    Sci Technol Adv Mater; 2017; 18(1):620-633. PubMed ID: 28970870
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly Electroconductive Nanopapers Based on Nanocellulose and Copper Nanowires: A New Generation of Flexible and Sustainable Electrical Materials.
    Pinto RJB; Martins MA; Lucas JMF; Vilela C; Sales AJM; Costa LC; Marques PAAP; Freire CSR
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34208-34216. PubMed ID: 32588615
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Smart materials for flexible electronics and devices: hydrogel.
    Dutta T; Chaturvedi P; Llamas-Garro I; Velázquez-González JS; Dubey R; Mishra SK
    RSC Adv; 2024 Apr; 14(19):12984-13004. PubMed ID: 38655485
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design of High-Performance Wearable Energy and Sensor Electronics from Fiber Materials.
    Chen Y; Xu B; Gong J; Wen J; Hua T; Kan CW; Deng J
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2120-2129. PubMed ID: 30571093
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Current State of Applications of Nanocellulose in Flexible Energy and Electronic Devices.
    Dias OAT; Konar S; Leão AL; Yang W; Tjong J; Sain M
    Front Chem; 2020; 8():420. PubMed ID: 32528931
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.
    Ji J; Li Y; Peng W; Zhang G; Zhang F; Fan X
    Adv Mater; 2015 Sep; 27(36):5264-79. PubMed ID: 26270245
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors.
    Aytug T; Rager MS; Higgins W; Brown FG; Veith GM; Rouleau CM; Wang H; Hood ZD; Mahurin SM; Mayes RT; Joshi PC; Kuruganti T
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11008-11017. PubMed ID: 29528215
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On the configuration of supercapacitors for maximizing electrochemical performance.
    Zhang J; Zhao XS
    ChemSusChem; 2012 May; 5(5):818-41. PubMed ID: 22550045
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MOF/graphene oxide based composites in smart supercapacitors: a comprehensive review on the electrochemical evaluation and material development for advanced energy storage devices.
    Gautam S; Rialach S; Paul S; Goyal N
    RSC Adv; 2024 Apr; 14(20):14311-14339. PubMed ID: 38690108
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Facile Processing of Free-Standing Polyaniline/SWCNT Film as an Integrated Electrode for Flexible Supercapacitor Application.
    Liu F; Luo S; Liu D; Chen W; Huang Y; Dong L; Wang L
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33791-33801. PubMed ID: 28884579
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-Performance Biomass-Based Flexible Solid-State Supercapacitor Constructed of Pressure-Sensitive Lignin-Based and Cellulose Hydrogels.
    Peng Z; Zou Y; Xu S; Zhong W; Yang W
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22190-22200. PubMed ID: 29882652
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors.
    Li Z; Liu X; Wang L; Bu F; Wei J; Pan D; Wu M
    Small; 2018 Sep; 14(39):e1801498. PubMed ID: 30151984
    [TBL] [Abstract][Full Text] [Related]  

  • 57.
    Zhou S; Nyholm L; Strømme M; Wang Z
    Acc Chem Res; 2019 Aug; 52(8):2232-2243. PubMed ID: 31290643
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.
    Salunkhe RR; Lee YH; Chang KH; Li JM; Simon P; Tang J; Torad NL; Hu CC; Yamauchi Y
    Chemistry; 2014 Oct; 20(43):13838-52. PubMed ID: 25251360
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flexible Conductive Cellulose Network-Based Composite Hydrogel for Multifunctional Supercapacitors.
    Ke S; Wang Z; Zhang K; Cheng F; Sun J; Wang N; Zhu Y
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32570694
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct Writing Supercapacitors Using a Carbon Nanotube/Ag Nanoparticle-Based Ink on Cellulose Acetate Membrane Paper.
    Guan X; Cao L; Huang Q; Kong D; Zhang P; Lin H; Li W; Lin Z; Yuan H
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31163632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.