These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31242680)

  • 1. Nano-Cracked Strain Sensor with High Sensitivity and Linearity by Controlling the Crack Arrangement.
    Jung H; Park C; Lee H; Hong S; Kim H; Cho SJ
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31242680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significant Stretchability Enhancement of a Crack-Based Strain Sensor Combined with High Sensitivity and Superior Durability for Motion Monitoring.
    Zhou Y; Zhan P; Ren M; Zheng G; Dai K; Mi L; Liu C; Shen C
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7405-7414. PubMed ID: 30698944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibrous strain sensor with ultra-sensitivity, wide sensing range, and large linearity for full-range detection of human motion.
    Wu H; Liu Q; Chen H; Shi G; Li C
    Nanoscale; 2018 Sep; 10(37):17512-17519. PubMed ID: 30204192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks.
    Song H; Zhang J; Chen D; Wang K; Niu S; Han Z; Ren L
    Nanoscale; 2017 Jan; 9(3):1166-1173. PubMed ID: 28009874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crack-Based Sensor by Using the UV Curable Polyurethane-Acrylate Coated Film with V-Groove Arrays.
    Park J; Kim DS; Yoon Y; Shanmugasundaram A; Lee DW
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable Strain Sensors with Aligned Macro Carbon Cracks Using a Two-Dimensional Triaxial-Braided Fabric Structure for Monitoring Human Health.
    Park S; Choi H; Cho Y; Jeong J; Sun J; Cha S; Choi M; Bae J; Park JJ
    ACS Appl Mater Interfaces; 2021 May; 13(19):22926-22934. PubMed ID: 33960762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. M13 Bacteriophage-Assisted Morphological Engineering of Crack-Based Sensors for Highly Sensitive and Wide Linear Range Strain Sensing.
    Kim KH; Nguyen TM; Ha SH; Choi EJ; Kim Y; Kim WG; Oh JW; Kim JM
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45590-45601. PubMed ID: 32914629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Through-Layer Buckle Wavelength-Gradient Design for the Coupling of High Sensitivity and Stretchability in a Single Strain Sensor.
    He T; Lin C; Shi L; Wang R; Sun J
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9653-9662. PubMed ID: 29493211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtosecond Laser Fabrication of High-Linearity Liquid Metal-Based Flexible Strain Sensor.
    Li C; Zhang C; Li H; Luo Z; Zhang Y; Hou X; Yang Q; Chen F
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and Performance Evaluation of Highly Sensitive Flexible Strain Sensors with Aligned Silver Nanowires.
    Choi JH; Shin MG; Jung Y; Kim DH; Ko JS
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 32019263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance wearable strain sensors based on fragmented carbonized melamine sponges for human motion detection.
    Fang X; Tan J; Gao Y; Lu Y; Xuan F
    Nanoscale; 2017 Nov; 9(45):17948-17956. PubMed ID: 29125167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor.
    Kim HJ; Thukral A; Yu C
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):5000-5006. PubMed ID: 29333853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning Strain Sensor Performance via Programmed Thin-Film Crack Evolution.
    Zhu J; Wu X; Jan J; Du S; Evans J; Arias AC
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38105-38113. PubMed ID: 34342977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Making a Bilateral Compression/Tension Sensor by Pre-Stretching Open-Crack Networks in Carbon Nanotube Papers.
    Xin Y; Zhou J; Tao R; Xu X; Lubineau G
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33507-33515. PubMed ID: 30211536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MoS
    Chhetry A; Sharifuzzaman M; Yoon H; Sharma S; Xuan X; Park JY
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22531-22542. PubMed ID: 31192579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable and Transparent Capacitive Strain Sensor with High Sensitivity Based on Patterned Ag Nanowire Networks.
    Kim SR; Kim JH; Park JW
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26407-26416. PubMed ID: 28730804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain Sensor with Both a Wide Sensing Range and High Sensitivity Based on Braided Graphene Belts.
    Li Y; He T; Shi L; Wang R; Sun J
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17691-17698. PubMed ID: 32207287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Highly Sensitive Capacitive-type Strain Sensor Using Wrinkled Ultrathin Gold Films.
    Nur R; Matsuhisa N; Jiang Z; Nayeem MOG; Yokota T; Someya T
    Nano Lett; 2018 Sep; 18(9):5610-5617. PubMed ID: 30070850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive and Highly Compressible Piezoresistive Sensor Based on Polyurethane Sponge Coated with a Cracked Cellulose Nanofibril/Silver Nanowire Layer.
    Zhang S; Liu H; Yang S; Shi X; Zhang D; Shan C; Mi L; Liu C; Shen C; Guo Z
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10922-10932. PubMed ID: 30794745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wrinkle Clamp Down on Structure Crack Strain Sensor Based on High Poisson's Ratio Material for Home Health Monitoring and Human-Machine Interaction.
    Zhang Y; Xiao Y; Xu Y; Zhang S; Qu C; Liu H; Huang K; Shao H
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31729-31739. PubMed ID: 37341485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.