These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31242743)

  • 21. Copper Binding Regulates Cellular Prion Protein Function.
    Nguyen XTA; Tran TH; Cojoc D; Legname G
    Mol Neurobiol; 2019 Sep; 56(9):6121-6133. PubMed ID: 30729399
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binary and ternary mixed metal complexes of terminally free peptides containing two different histidyl binding sites.
    Grenács A; Kaluha A; Kállay C; Jószai V; Sanna D; Sóvágó I
    J Inorg Biochem; 2013 Nov; 128():17-25. PubMed ID: 23911567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Copper(II) binding modes in the prion octapeptide PHGGGWGQ: a spectroscopic and voltammetric study.
    Bonomo RP; Imperllizzeri G; Pappalardo G; Rizzarelli E; Tabbì G
    Chemistry; 2000 Nov; 6(22):4195-202. PubMed ID: 11128284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the copper(II) ion coordination by prion protein HGGGW pentapeptide model.
    Marino T; Russo N; Toscano M
    J Phys Chem B; 2007 Jan; 111(3):635-40. PubMed ID: 17228921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temperature-Induced Misfolding in Prion Protein: Evidence of Multiple Partially Disordered States Stabilized by Non-Native Hydrogen Bonds.
    Chamachi NG; Chakrabarty S
    Biochemistry; 2017 Feb; 56(6):833-844. PubMed ID: 28102071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of interactions between metal ions and protein model compounds by energy decomposition analyses and the AMOEBA force field.
    Jing Z; Qi R; Liu C; Ren P
    J Chem Phys; 2017 Oct; 147(16):161733. PubMed ID: 29096462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Raman spectroscopic study on the copper(II) binding mode of prion octapeptide and its pH dependence.
    Miura T; Hori-i A; Mototani H; Takeuchi H
    Biochemistry; 1999 Aug; 38(35):11560-9. PubMed ID: 10471308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy.
    Aronoff-Spencer E; Burns CS; Avdievich NI; Gerfen GJ; Peisach J; Antholine WE; Ball HL; Cohen FE; Prusiner SB; Millhauser GL
    Biochemistry; 2000 Nov; 39(45):13760-71. PubMed ID: 11076515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copper induces structural changes in N-terminus of human prion protein.
    Lu B; Zhao L; Qin K
    Biochem Biophys Res Commun; 2018 May; 499(3):470-474. PubMed ID: 29580990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copper(II) and zinc(II) ion binding properties of a MAP type branched ligand with histidines as surface functionalities.
    Kolozsi A; Vosekalna I; Martinek T; Larsen E; Gyurcsik B
    Dalton Trans; 2009 Aug; (29):5647-54. PubMed ID: 20449077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coordination of Ni2+ and Cu2+ to metal ion binding domains of E. coli SlyD protein.
    Witkowska D; Valensin D; Rowinska-Zyrek M; Karafova A; Kamysz W; Kozlowski H
    J Inorg Biochem; 2012 Feb; 107(1):73-81. PubMed ID: 22178668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Copper binding to the neurotoxic peptide PrP106-126: thermodynamic and structural studies.
    Belosi B; Gaggelli E; Guerrini R; Kozłowski H; Łuczkowski M; Mancini FM; Remelli M; Valensin D; Valensin G
    Chembiochem; 2004 Mar; 5(3):349-59. PubMed ID: 14997527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Copper(II) interaction with the Human Prion 103-112 fragment - Coordination and oxidation.
    Csire G; Nagy L; Várnagy K; Kállay C
    J Inorg Biochem; 2017 May; 170():195-201. PubMed ID: 28260678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Micellar environments induce structuring of the N-terminal tail of the prion protein.
    Renner C; Fiori S; Fiorino F; Landgraf D; Deluca D; Mentler M; Grantner K; Parak FG; Kretzschmar H; Moroder L
    Biopolymers; 2004 Mar; 73(4):421-33. PubMed ID: 14991659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Copper reduction by the octapeptide repeat region of prion protein: pH dependence and implications in cellular copper uptake.
    Miura T; Sasaki S; Toyama A; Takeuchi H
    Biochemistry; 2005 Jun; 44(24):8712-20. PubMed ID: 15952778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EPR of copper centers in the prion protein.
    Quintanar L; Millhauser GL
    Methods Enzymol; 2022; 666():297-314. PubMed ID: 35465923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combination of Copper Ions and Nucleotide Generates Aggregates from Prion Protein Fragments in the N-Terminal Domain.
    Shiraishi N; Hirano Y
    Protein Pept Lett; 2020; 27(8):782-792. PubMed ID: 32096738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copper- and Zinc-Promoted Interdomain Structure in the Prion Protein: A Mechanism for Autoinhibition of the Neurotoxic N-Terminus.
    Evans EGB; Millhauser GL
    Prog Mol Biol Transl Sci; 2017; 150():35-56. PubMed ID: 28838668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active site modeling in copper azurin molecular dynamics simulations.
    Rizzuti B; Swart M; Sportelli L; Guzzi R
    J Mol Model; 2004 Feb; 10(1):25-31. PubMed ID: 14691672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The dimeric and tetrameric octarepeat fragments of prion protein behave differently to its monomeric unit.
    Valensin D; Luczkowski M; Mancini FM; Legowska A; Gaggelli E; Valensin G; Rolka K; Kozlowski H
    Dalton Trans; 2004 May; (9):1284-93. PubMed ID: 15252619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.