These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 31243078)
1. Development of a CRISPR/Cas9-Based Tool for Gene Deletion in Tran VG; Cao M; Fatma Z; Song X; Zhao H mSphere; 2019 Jun; 4(3):. PubMed ID: 31243078 [TBL] [Abstract][Full Text] [Related]
2. Multiplexed CRISPR-Cas9-Based Genome Editing of Otoupal PB; Ito M; Arkin AP; Magnuson JK; Gladden JM; Skerker JM mSphere; 2019 Mar; 4(2):. PubMed ID: 30894433 [TBL] [Abstract][Full Text] [Related]
3. A genetic toolbox for metabolic engineering of Issatchenkia orientalis. Cao M; Fatma Z; Song X; Hsieh PH; Tran VG; Lyon WL; Sayadi M; Shao Z; Yoshikuni Y; Zhao H Metab Eng; 2020 May; 59():87-97. PubMed ID: 32007615 [TBL] [Abstract][Full Text] [Related]
4. A landing pad system for multicopy gene integration in Issatchenkia orientalis. Fatma Z; Tan SI; Boob AG; Zhao H Metab Eng; 2023 Jul; 78():200-208. PubMed ID: 37343658 [TBL] [Abstract][Full Text] [Related]
5. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha. Numamoto M; Maekawa H; Kaneko Y J Biosci Bioeng; 2017 Nov; 124(5):487-492. PubMed ID: 28666889 [TBL] [Abstract][Full Text] [Related]
6. Construction of a series of episomal plasmids and their application in the development of an efficient CRISPR/Cas9 system in Pichia pastoris. Gu Y; Gao J; Cao M; Dong C; Lian J; Huang L; Cai J; Xu Z World J Microbiol Biotechnol; 2019 May; 35(6):79. PubMed ID: 31134410 [TBL] [Abstract][Full Text] [Related]
7. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System. Wang S; Dong S; Wang P; Tao Y; Wang Y Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147 [No Abstract] [Full Text] [Related]
8. Development of a CRISPR/Cas9 system for high efficiency multiplexed gene deletion in Rhodosporidium toruloides. Schultz JC; Cao M; Zhao H Biotechnol Bioeng; 2019 Aug; 116(8):2103-2109. PubMed ID: 31038202 [TBL] [Abstract][Full Text] [Related]
9. Cas9-Based Metabolic Engineering of Lee YG; Kim C; Kuanyshev N; Kang NK; Fatma Z; Wu ZY; Cheng MH; Singh V; Yoshikuni Y; Zhao H; Jin YS J Agric Food Chem; 2022 Sep; 70(38):12085-12094. PubMed ID: 36103687 [No Abstract] [Full Text] [Related]
10. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227 [TBL] [Abstract][Full Text] [Related]
11. Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host. Cernak P; Estrela R; Poddar S; Skerker JM; Cheng YF; Carlson AK; Chen B; Glynn VM; Furlan M; Ryan OW; Donnelly MK; Arkin AP; Taylor JW; Cate JHD mBio; 2018 Sep; 9(5):. PubMed ID: 30254120 [TBL] [Abstract][Full Text] [Related]
12. High efficiency CRISPR/Cas9 genome editing system with an eliminable episomal sgRNA plasmid in Pichia pastoris. Yang Y; Liu G; Chen X; Liu M; Zhan C; Liu X; Bai Z Enzyme Microb Technol; 2020 Aug; 138():109556. PubMed ID: 32527526 [TBL] [Abstract][Full Text] [Related]
13. A versatile toolbox for CRISPR-based genome engineering in Pichia pastoris. Liao X; Li L; Jameel A; Xing XH; Zhang C Appl Microbiol Biotechnol; 2021 Dec; 105(24):9211-9218. PubMed ID: 34773154 [TBL] [Abstract][Full Text] [Related]
14. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae. Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556 [TBL] [Abstract][Full Text] [Related]
15. Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae. Generoso WC; Gottardi M; Oreb M; Boles E J Microbiol Methods; 2016 Aug; 127():203-205. PubMed ID: 27327211 [TBL] [Abstract][Full Text] [Related]
16. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843 [TBL] [Abstract][Full Text] [Related]
17. Implementing CRISPR-Cas12a for Efficient Genome Editing in Yarrowia lipolytica. Yang Z; Xu P Methods Mol Biol; 2021; 2307():111-121. PubMed ID: 33847985 [TBL] [Abstract][Full Text] [Related]
18. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum. Wasels F; Jean-Marie J; Collas F; López-Contreras AM; Lopes Ferreira N J Microbiol Methods; 2017 Sep; 140():5-11. PubMed ID: 28610973 [TBL] [Abstract][Full Text] [Related]
19. Genome Editing of Hakimi H; Ishizaki T; Kegawa Y; Kaneko O; Kawazu SI; Asada M mSphere; 2019 Jun; 4(3):. PubMed ID: 31189559 [No Abstract] [Full Text] [Related]
20. Bacterial Genome Editing with CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable "Clean" Mutant Selection in Clostridium beijerinckii as an Example. Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP ACS Synth Biol; 2016 Jul; 5(7):721-32. PubMed ID: 27115041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]