BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 31243119)

  • 1. Probing compartment-specific sphingolipids with targeted bacterial sphingomyelinases and ceramidases.
    Sakamoto W; Canals D; Salamone S; Allopenna J; Clarke CJ; Snider J; Obeid LM; Hannun YA
    J Lipid Res; 2019 Nov; 60(11):1841-1850. PubMed ID: 31243119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases.
    Canals D; Perry DM; Jenkins RW; Hannun YA
    Br J Pharmacol; 2011 Jun; 163(4):694-712. PubMed ID: 21615386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functions of neutral ceramidase in the Golgi apparatus.
    Sakamoto W; Coant N; Canals D; Obeid LM; Hannun YA
    J Lipid Res; 2018 Nov; 59(11):2116-2125. PubMed ID: 30154232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An overview of sphingolipid metabolism: from synthesis to breakdown.
    Gault CR; Obeid LM; Hannun YA
    Adv Exp Med Biol; 2010; 688():1-23. PubMed ID: 20919643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Intracellular Lipid Logistics in the Preferential Usage of Very Long Chain-Ceramides in Glucosylceramide.
    Yamaji T; Horie A; Tachida Y; Sakuma C; Suzuki Y; Kushi Y; Hanada K
    Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27775668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic evidence for ATP-dependent endoplasmic reticulum-to-Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in Chinese hamster ovary cells.
    Fukasawa M; Nishijima M; Hanada K
    J Cell Biol; 1999 Feb; 144(4):673-85. PubMed ID: 10037789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of ceramide and sphingosine 1-phosphate on ERM phosphorylation: probing sphingolipid signaling at the outer plasma membrane.
    Canals D; Jenkins RW; Roddy P; Hernández-Corbacho MJ; Obeid LM; Hannun YA
    J Biol Chem; 2010 Oct; 285(42):32476-85. PubMed ID: 20679347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ceramide metabolism is affected by obesity and diabetes in human adipose tissue.
    Błachnio-Zabielska AU; Pułka M; Baranowski M; Nikołajuk A; Zabielski P; Górska M; Górski J
    J Cell Physiol; 2012 Feb; 227(2):550-7. PubMed ID: 21437908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Ceramidases in Sphingolipid Metabolism and Human Diseases.
    Parveen F; Bender D; Law SH; Mishra VK; Chen CC; Ke LY
    Cells; 2019 Dec; 8(12):. PubMed ID: 31817238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space.
    Tani M; Ito M; Igarashi Y
    Cell Signal; 2007 Feb; 19(2):229-37. PubMed ID: 16963225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of sphingolipid turnover and chronic generation of ceramide and sphingosine in liver during aging.
    Lightle SA; Oakley JI; Nikolova-Karakashian MN
    Mech Ageing Dev; 2000 Dec; 120(1-3):111-25. PubMed ID: 11087909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complexity of sphingolipid biosynthesis in the endoplasmic reticulum.
    Tidhar R; Futerman AH
    Biochim Biophys Acta; 2013 Nov; 1833(11):2511-8. PubMed ID: 23611790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Arabidopsis ceramidase AtACER functions in disease resistance and salt tolerance.
    Wu JX; Li J; Liu Z; Yin J; Chang ZY; Rong C; Wu JL; Bi FC; Yao N
    Plant J; 2015 Mar; 81(5):767-80. PubMed ID: 25619405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of high-fat diet on the sphingolipid pathway of signal transduction in regenerating rat liver.
    Zabielski P; Baranowski M; Błachnio-Zabielska A; Zendzian-Piotrowska M; Górski J
    Prostaglandins Other Lipid Mediat; 2010 Nov; 93(3-4):75-83. PubMed ID: 20599517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The long-chain sphingoid base of sphingolipids is acylated at the cytosolic surface of the endoplasmic reticulum in rat liver.
    Hirschberg K; Rodger J; Futerman AH
    Biochem J; 1993 Mar; 290 ( Pt 3)(Pt 3):751-7. PubMed ID: 8457204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Dark Side of Sphingolipids: Searching for Potential Cardiovascular Biomarkers.
    Di Pietro P; Izzo C; Abate AC; Iesu P; Rusciano MR; Venturini E; Visco V; Sommella E; Ciccarelli M; Carrizzo A; Vecchione C
    Biomolecules; 2023 Jan; 13(1):. PubMed ID: 36671552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of ceramide in regulating endoplasmic reticulum function.
    Zelnik ID; Ventura AE; Kim JL; Silva LC; Futerman AH
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Jan; 1865(1):158489. PubMed ID: 31233888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limonoid compounds inhibit sphingomyelin biosynthesis by preventing CERT protein-dependent extraction of ceramides from the endoplasmic reticulum.
    Hullin-Matsuda F; Tomishige N; Sakai S; Ishitsuka R; Ishii K; Makino A; Greimel P; Abe M; Laviad EL; Lagarde M; Vidal H; Saito T; Osada H; Hanada K; Futerman AH; Kobayashi T
    J Biol Chem; 2012 Jul; 287(29):24397-411. PubMed ID: 22605339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The sphingolipid salvage pathway in ceramide metabolism and signaling.
    Kitatani K; Idkowiak-Baldys J; Hannun YA
    Cell Signal; 2008 Jun; 20(6):1010-8. PubMed ID: 18191382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingomyelinases and Liver Diseases.
    Insausti-Urkia N; Solsona-Vilarrasa E; Garcia-Ruiz C; Fernandez-Checa JC
    Biomolecules; 2020 Oct; 10(11):. PubMed ID: 33143193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.