These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31243361)

  • 1. Living annulative π-extension polymerization for graphene nanoribbon synthesis.
    Yano Y; Mitoma N; Matsushima K; Wang F; Matsui K; Takakura A; Miyauchi Y; Ito H; Itami K
    Nature; 2019 Jul; 571(7765):387-392. PubMed ID: 31243361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Step-Growth Annulative π-Extension Polymerization for Synthesis of Cove-Type Graphene Nanoribbons.
    Yano Y; Wang F; Mitoma N; Miyauchi Y; Ito H; Itami K
    J Am Chem Soc; 2020 Jan; 142(4):1686-1691. PubMed ID: 31918548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-shot K-region-selective annulative π-extension for nanographene synthesis and functionalization.
    Ozaki K; Kawasumi K; Shibata M; Ito H; Itami K
    Nat Commun; 2015 Feb; 6():6251. PubMed ID: 25683787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Templated Synthesis of End-Functionalized Graphene Nanoribbons through Living Ring-Opening Alkyne Metathesis Polymerization.
    von Kugelgen S; Piskun I; Griffin JH; Eckdahl CT; Jarenwattananon NN; Fischer FR
    J Am Chem Soc; 2019 Jul; 141(28):11050-11058. PubMed ID: 31264864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Access to Nanographenes and Fused Heteroaromatics by Palladium-Catalyzed Annulative π-Extension Reaction of Unfunctionalized Aromatics with Diiodobiaryls.
    Matsuoka W; Ito H; Itami K
    Angew Chem Int Ed Engl; 2017 Sep; 56(40):12224-12228. PubMed ID: 28800388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bottom-up Construction of π-Extended Arenes by a Palladium-Catalyzed Annulative Dimerization of o-Iodobiaryl Compounds.
    Zhu C; Wang D; Wang D; Zhao Y; Sun WY; Shi Z
    Angew Chem Int Ed Engl; 2018 Jul; 57(29):8848-8853. PubMed ID: 29663643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes.
    Talyzin AV; Anoshkin IV; Krasheninnikov AV; Nieminen RM; Nasibulin AG; Jiang H; Kauppinen EI
    Nano Lett; 2011 Oct; 11(10):4352-6. PubMed ID: 21875092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Annulative π-extension of indoles and pyrroles with diiodobiaryls by Pd catalysis: rapid synthesis of nitrogen-containing polycyclic aromatic compounds.
    Kitano H; Matsuoka W; Ito H; Itami K
    Chem Sci; 2018 Oct; 9(38):7556-7561. PubMed ID: 30319756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified Engineering of Graphene Nanoribbons Prepared via On-Surface Synthesis.
    Zhou X; Yu G
    Adv Mater; 2020 Feb; 32(6):e1905957. PubMed ID: 31830353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise Structural Regulation and Band-Gap Engineering of Curved Graphene Nanoribbons.
    Niu W; Ma J; Feng X
    Acc Chem Res; 2022 Dec; 55(23):3322-3333. PubMed ID: 36378659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Step Annulative π-Extension of Alkynes with Dibenzosiloles or Dibenzogermoles by Palladium/o-chloranil Catalysis.
    Ozaki K; Murai K; Matsuoka W; Kawasumi K; Ito H; Itami K
    Angew Chem Int Ed Engl; 2017 Jan; 56(5):1361-1364. PubMed ID: 28000385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical On-Surface Synthesis of Graphene Nanoribbon Heterojunctions.
    Bronner C; Durr RA; Rizzo DJ; Lee YL; Marangoni T; Kalayjian AM; Rodriguez H; Zhao W; Louie SG; Fischer FR; Crommie MF
    ACS Nano; 2018 Mar; 12(3):2193-2200. PubMed ID: 29381853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable and Precise Synthesis of Armchair-Edge Graphene Nanoribbon in Metal-Organic Framework.
    Kitao T; MacLean MWA; Nakata K; Takayanagi M; Nagaoka M; Uemura T
    J Am Chem Soc; 2020 Mar; 142(12):5509-5514. PubMed ID: 32148033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergetic Bottom-Up Synthesis of Graphene Nanoribbons by Matrix-Assisted Direct Transfer.
    McCurdy RD; Jacobse PH; Piskun I; Veber GC; Rizzo DJ; Zuzak R; Mutlu Z; Bokor J; Crommie MF; Fischer FR
    J Am Chem Soc; 2021 Mar; 143(11):4174-4178. PubMed ID: 33710887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ribbon width on electrical transport properties of graphene nanoribbons.
    Bang K; Chee SS; Kim K; Son M; Jang H; Lee BH; Baik KH; Myoung JM; Ham MH
    Nano Converg; 2018; 5(1):7. PubMed ID: 29577013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bottom-Up On-Surface Synthesis of Two-Dimensional Graphene Nanoribbon Networks and Their Thermoelectric Properties.
    Kojima T; Nakae T; Xu Z; Saravanan C; Watanabe K; Nakamura Y; Sakaguchi H
    Chem Asian J; 2019 Dec; 14(23):4400-4407. PubMed ID: 31724299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Width-controlled sub-nanometer graphene nanoribbon films synthesized by radical-polymerized chemical vapor deposition.
    Sakaguchi H; Kawagoe Y; Hirano Y; Iruka T; Yano M; Nakae T
    Adv Mater; 2014 Jun; 26(24):4134-8. PubMed ID: 24711068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores.
    Shekhirev M; Zahl P; Sinitskii A
    ACS Nano; 2018 Aug; 12(8):8662-8669. PubMed ID: 30085655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.