These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31243384)

  • 1. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle.
    Jafferis NT; Helbling EF; Karpelson M; Wood RJ
    Nature; 2019 Jun; 570(7762):491-495. PubMed ID: 31243384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled flight of a microrobot powered by soft artificial muscles.
    Chen Y; Zhao H; Mao J; Chirarattananon P; Helbling EF; Hyun NP; Clarke DR; Wood RJ
    Nature; 2019 Nov; 575(7782):324-329. PubMed ID: 31686057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
    Tay WB; van Oudheusden BW; Bijl H
    Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, Characterization, and Liftoff of an Insect-Scale Soft Robotic Dragonfly Powered by Dielectric Elastomer Actuators.
    Chen Y; Arase C; Ren Z; Chirarattananon P
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimicry of the Hawk Moth,
    Moses K; Willis M; Quinn R
    Biomimetics (Basel); 2020 Jun; 5(2):. PubMed ID: 32512859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation.
    Nguyen QV; Chan WL
    Bioinspir Biomim; 2018 Dec; 14(1):016015. PubMed ID: 30523879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sunlight-powered sustained flight of an ultralight micro aerial vehicle.
    Shen W; Peng J; Ma R; Wu J; Li J; Liu Z; Leng J; Yan X; Qi M
    Nature; 2024 Jul; 631(8021):537-543. PubMed ID: 39020037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Untethered hovering flapping flight of a 3D-printed mechanical insect.
    Richter C; Lipson H
    Artif Life; 2011; 17(2):73-86. PubMed ID: 21370958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Retrospective of Project Robo Raven: Developing New Capabilities for Enhancing the Performance of Flapping Wing Aerial Vehicles.
    Bruck HA; Gupta SK
    Biomimetics (Basel); 2023 Oct; 8(6):. PubMed ID: 37887616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible flapping wings with self-organized microwrinkles.
    Tanaka H; Okada H; Shimasue Y; Liu H
    Bioinspir Biomim; 2015 Jun; 10(4):046005. PubMed ID: 26119657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.
    Shang JK; Combes SA; Finio BM; Wood RJ
    Bioinspir Biomim; 2009 Sep; 4(3):036002. PubMed ID: 19713572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators.
    Ji X; Liu X; Cacucciolo V; Imboden M; Civet Y; El Haitami A; Cantin S; Perriard Y; Shea H
    Sci Robot; 2019 Dec; 4(37):. PubMed ID: 33137720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fruit fly scale robots can hover longer with flapping wings than with spinning wings.
    Hawkes EW; Lentink D
    J R Soc Interface; 2016 Oct; 13(123):. PubMed ID: 27707903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal pitching axis location of flapping wings for efficient hovering flight.
    Wang Q; Goosen JFL; van Keulen F
    Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight.
    Phan HV; Truong QT; Park HC
    Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanics and biomimetics in insect-inspired flight systems.
    Liu H; Ravi S; Kolomenskiy D; Tanaka H
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-amplified zipping actuators for micro-air vehicles with transmission-free flapping.
    Helps T; Romero C; Taghavi M; Conn AT; Rossiter J
    Sci Robot; 2022 Feb; 7(63):eabi8189. PubMed ID: 35108024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient flapping wing drone arrests high-speed flight using post-stall soaring.
    Chin YW; Kok JM; Zhu YQ; Chan WL; Chahl JS; Khoo BC; Lau GK
    Sci Robot; 2020 Jul; 5(44):. PubMed ID: 33022610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of chordwise wing flexibility on flapping flight of a butterfly model using immersed-boundary lattice Boltzmann simulations.
    Suzuki K; Aoki T; Yoshino M
    Phys Rev E; 2019 Jul; 100(1-1):013104. PubMed ID: 31499861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.