These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 31243386)

  • 1. Stationary entangled radiation from micromechanical motion.
    Barzanjeh S; Redchenko ES; Peruzzo M; Wulf M; Lewis DP; Arnold G; Fink JM
    Nature; 2019 Jun; 570(7762):480-483. PubMed ID: 31243386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Satisfying the Einstein-Podolsky-Rosen criterion with massive particles.
    Peise J; Kruse I; Lange K; Lücke B; Pezzè L; Arlt J; Ertmer W; Hammerer K; Santos L; Smerzi A; Klempt C
    Nat Commun; 2015 Nov; 6():8984. PubMed ID: 26612105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Entanglement Swapping between Two Multipartite Entangled States.
    Su X; Tian C; Deng X; Li Q; Xie C; Peng K
    Phys Rev Lett; 2016 Dec; 117(24):240503. PubMed ID: 28009187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetostrictively Induced Stationary Entanglement between Two Microwave Fields.
    Yu M; Shen H; Li J
    Phys Rev Lett; 2020 May; 124(21):213604. PubMed ID: 32530657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.
    Verhagen E; Deléglise S; Weis S; Schliesser A; Kippenberg TJ
    Nature; 2012 Feb; 482(7383):63-7. PubMed ID: 22297970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating entangled microwave radiation over two transmission lines.
    Flurin E; Roch N; Mallet F; Devoret MH; Huard B
    Phys Rev Lett; 2012 Nov; 109(18):183901. PubMed ID: 23215279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency entanglement of microwave fields in cavity opto-magnomechanical systems.
    Di K; Tan S; Wang L; Cheng A; Wang X; Liu Y; Du J
    Opt Express; 2023 Aug; 31(18):29491-29503. PubMed ID: 37710748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermally controlled optical resonator for vacuum squeezed states separation.
    Nguyen C; Bréelle E; Barsuglia M; Capocasa E; De Laurentis M; Sequino V; Sorrentino F
    Appl Opt; 2022 Jun; 61(17):5226-5236. PubMed ID: 36256205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proposal for Heralded Generation and Detection of Entangled Microwave-Optical-Photon Pairs.
    Zhong C; Wang Z; Zou C; Zhang M; Han X; Fu W; Xu M; Shankar S; Devoret MH; Tang HX; Jiang L
    Phys Rev Lett; 2020 Jan; 124(1):010511. PubMed ID: 31976686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable control of 10 dB two-mode squeezed vacuum states of light.
    Eberle T; Händchen V; Schnabel R
    Opt Express; 2013 May; 21(9):11546-53. PubMed ID: 23670011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic homodyne detection of continuous-variable entangled twin-atom states.
    Gross C; Strobel H; Nicklas E; Zibold T; Bar-Gill N; Kurizki G; Oberthaler MK
    Nature; 2011 Nov; 480(7376):219-23. PubMed ID: 22139418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite-time quantum entanglement in propagating squeezed microwaves.
    Fedorov KG; Pogorzalek S; Las Heras U; Sanz M; Yard P; Eder P; Fischer M; Goetz J; Xie E; Inomata K; Nakamura Y; Di Candia R; Solano E; Marx A; Deppe F; Gross R
    Sci Rep; 2018 Apr; 8(1):6416. PubMed ID: 29686396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deterministic quantum teleportation through fiber channels.
    Huo M; Qin J; Cheng J; Yan Z; Qin Z; Su X; Jia X; Xie C; Peng K
    Sci Adv; 2018 Oct; 4(10):eaas9401. PubMed ID: 30345350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental demonstration of Einstein-Podolsky-Rosen entanglement in rotating coordinate space.
    Wang K; Ding DS; Zhang W; He QY; Guo GC; Shi BS
    Sci Bull (Beijing); 2020 Feb; 65(4):280-285. PubMed ID: 36659092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entangling mechanical motion with microwave fields.
    Palomaki TA; Teufel JD; Simmonds RW; Lehnert KW
    Science; 2013 Nov; 342(6159):710-3. PubMed ID: 24091706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulse-resolved measurement of continuous-variable Einstein-Podolsky-Rosen entanglement with shaped local oscillators.
    Shinjo A; Eto Y; Hirano T
    Opt Express; 2019 Jun; 27(13):17610-17619. PubMed ID: 31252718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of Einstein-Podolsky-Rosen-entangled radiation through an atomic reservoir.
    Pielawa S; Morigi G; Vitali D; Davidovich L
    Phys Rev Lett; 2007 Jun; 98(24):240401. PubMed ID: 17677944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms.
    Lee JC; Park KK; Zhao TM; Kim YH
    Phys Rev Lett; 2016 Dec; 117(25):250501. PubMed ID: 28036221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct transfer of classical non-separable states into hybrid entangled two photon states.
    Jabir MV; Apurv Chaitanya N; Mathew M; Samanta GK
    Sci Rep; 2017 Aug; 7(1):7331. PubMed ID: 28779165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of Gaussian-modulated entangled states for continuous variable quantum communication.
    Wang N; Du S; Liu W; Wang X; Li Y
    Opt Lett; 2019 Aug; 44(15):3613-3616. PubMed ID: 31368999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.