These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 31243411)
1. Structural stability and thermoelectric performance of high quality synthetic and natural pyrites (FeS Zuñiga-Puelles E; Cardoso-Gil R; Bobnar M; Veremchuk I; Himcinschi C; Hennig C; Kortus J; Heide G; Gumeniuk R Dalton Trans; 2019 Jul; 48(28):10703-10713. PubMed ID: 31243411 [TBL] [Abstract][Full Text] [Related]
2. Hydride Synthesis and Thermoelectric Properties of Type-I Clathrate K Perez CJ; Bates VJ; Kauzlarich SM Inorg Chem; 2019 Jan; 58(2):1442-1450. PubMed ID: 30589252 [TBL] [Abstract][Full Text] [Related]
3. Inversion Boundaries and Phonon Scattering in Ga:ZnO Thermoelectric Compounds. Guilmeau E; Díaz-Chao P; Lebedev OI; Rečnik A; Schäfer MC; Delorme F; Giovannelli F; Košir M; Bernik S Inorg Chem; 2017 Jan; 56(1):480-487. PubMed ID: 27991782 [TBL] [Abstract][Full Text] [Related]
4. Impact of the iron substitution on the thermoelectric properties of Co Salas UA; Fourati I; Juraszek J; Richomme F; Pelloquin D; Maignan A; Hébert S Philos Trans A Math Phys Eng Sci; 2019 Aug; 377(2152):20180337. PubMed ID: 31280719 [TBL] [Abstract][Full Text] [Related]
5. Designing a Thermoelectric Copper-Rich Sulfide from a Natural Mineral: Synthetic Germanite Cu Pavan Kumar V; Paradis-Fortin L; Lemoine P; Caignaert V; Raveau B; Malaman B; Le Caër G; Cordier S; Guilmeau E Inorg Chem; 2017 Nov; 56(21):13376-13381. PubMed ID: 29052982 [TBL] [Abstract][Full Text] [Related]
6. Using crystallographic shear to reduce lattice thermal conductivity: high temperature thermoelectric characterization of the spark plasma sintered Magnéli phases WO2.90 and WO2.722. Kieslich G; Veremchuk I; Antonyshyn I; Zeier WG; Birkel CS; Weldert K; Heinrich CP; Visnow E; Panthöfer M; Burkhardt U; Grin Y; Tremel W Phys Chem Chem Phys; 2013 Oct; 15(37):15399-403. PubMed ID: 23936907 [TBL] [Abstract][Full Text] [Related]
7. High Thermoelectric Performance in Sintered Octahedron-Shaped Sn(CdIn) Moshwan R; Shi XL; Liu WD; Yang L; Wang Y; Hong M; Auchterlonie G; Zou J; Chen ZG ACS Appl Mater Interfaces; 2018 Nov; 10(45):38944-38952. PubMed ID: 30335928 [TBL] [Abstract][Full Text] [Related]
8. High efficiency Mg Farahi N; Stiewe C; Truong DYN; de Boor J; Müller E RSC Adv; 2019 Jul; 9(40):23021-23028. PubMed ID: 35514519 [TBL] [Abstract][Full Text] [Related]
9. Multiscale Length Structural Investigation and Thermoelectric Performance of Double-Filled Sr Serrano-Sanchez F; Rodrigues JE; Gainza J; Dejoie C; Dura OJ; Biskup N; Nemes NM; Martínez JL; Alonso JA ACS Mater Au; 2024 May; 4(3):324-334. PubMed ID: 38737123 [TBL] [Abstract][Full Text] [Related]
10. Magnetic and thermoelectric properties of the ternary pseudo-hollandite BaxCr5Se8 (0.5 < x < 0.55) solid solution. Lefèvre R; Berthebaud D; Bux S; Hébert S; Gascoin F Dalton Trans; 2016 Jul; 45(30):12119-26. PubMed ID: 27396273 [TBL] [Abstract][Full Text] [Related]
11. Thermoelectric Power Generation from Lanthanum Strontium Titanium Oxide at Room Temperature through the Addition of Graphene. Lin Y; Norman C; Srivastava D; Azough F; Wang L; Robbins M; Simpson K; Freer R; Kinloch IA ACS Appl Mater Interfaces; 2015 Jul; 7(29):15898-908. PubMed ID: 26095083 [TBL] [Abstract][Full Text] [Related]
12. Thermoelectric performance of layered SrxTiSe2 above 300 K. Bhatt R; Patel M; Bhattacharya S; Basu R; Ahmad S; Bhatt P; Chauhan AK; Navneethan M; Hayakawa Y; Singh A; Aswal DK; Gupta SK J Phys Condens Matter; 2014 Nov; 26(44):445002. PubMed ID: 25244149 [TBL] [Abstract][Full Text] [Related]
13. Ambient scalable synthesis of surfactant-free thermoelectric CuAgSe nanoparticles with reversible metallic-n-p conductivity transition. Han C; Sun Q; Cheng ZX; Wang JL; Li Z; Lu GQ; Dou SX J Am Chem Soc; 2014 Dec; 136(50):17626-33. PubMed ID: 25419613 [TBL] [Abstract][Full Text] [Related]
14. High Thermoelectric Performance of In Yin X; Liu JY; Chen L; Wu LM Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668 [TBL] [Abstract][Full Text] [Related]
15. Panoscopically optimized thermoelectric performance of a half-Heusler/full-Heusler based in situ bulk composite Zr(0.7)Hf(0.3)Ni(1+x)Sn: an energy and time efficient way. Bhardwaj A; Chauhan NS; Sancheti B; Pandey GN; Senguttuvan TD; Misra DK Phys Chem Chem Phys; 2015 Nov; 17(44):30090-101. PubMed ID: 26499748 [TBL] [Abstract][Full Text] [Related]
16. Thermoelectric performance enhancement of calcium cobaltite through barium grain boundary segregation. Carvillo P; Chen Y; Boyle C; Barnes PN; Song X Inorg Chem; 2015 Sep; 54(18):9027-32. PubMed ID: 26357956 [TBL] [Abstract][Full Text] [Related]
18. Investigation on the structure and thermoelectric properties of Cu Mukherjee S; Chetty R; Madduri PVP; Nayak AK; Wojciechowski K; Ghosh T; Chattopadhyay K; Suwas S; Mallik RC Dalton Trans; 2019 Jan; 48(3):1040-1050. PubMed ID: 30601531 [TBL] [Abstract][Full Text] [Related]
19. Spark Plasma Sintered Bulk Nanocomposites of Bi Du B; Lai X; Liu Q; Liu H; Wu J; Liu J; Zhang Z; Pei Y; Zhao H; Jian J ACS Appl Mater Interfaces; 2019 Sep; 11(35):31816-31823. PubMed ID: 31436073 [TBL] [Abstract][Full Text] [Related]
20. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Ma T; Liu Z; Wen J; Gao Y; Ren X; Chen H; Jin C; Ma XL; Xu N; Cheng HM; Ren W Nat Commun; 2017 Feb; 8():14486. PubMed ID: 28205514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]