These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 31243555)

  • 41. Interval-parameter semi-infinite fuzzy-stochastic mixed-integer programming approach for environmental management under multiple uncertainties.
    Guo P; Huang GH
    Waste Manag; 2010 Mar; 30(3):521-31. PubMed ID: 19854040
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantitative and qualitative management of water resources with the use of treated wastewater in agriculture.
    Abbasmiri SS; Mortazavi SA; Alamdarlo HN; Vakilpoor MH
    Water Environ Res; 2024 Jul; 96(7):e11064. PubMed ID: 39040008
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An improved MOPSO algorithm for multi-objective optimization of reservoir operation under climate change.
    Mansouri M; Safavi HR; Rezaei F
    Environ Monit Assess; 2022 Mar; 194(4):261. PubMed ID: 35257239
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method.
    Taherkhani N; Sepehri MM; Shafaghi S; Khatibi T
    BMC Med Inform Decis Mak; 2019 Sep; 19(1):182. PubMed ID: 31492132
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A robust multi-objective bargaining methodology for inter-basin water resource allocation: a case study.
    Nasiri-Gheidari O; Marofi S; Adabi F
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2726-2737. PubMed ID: 29134532
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A group decision-making tool for the application of membrane technologies in different water reuse scenarios.
    Sadr SM; Saroj DP; Kouchaki S; Ilemobade AA; Ouki SK
    J Environ Manage; 2015 Jun; 156():97-108. PubMed ID: 25839744
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multi-objective conflict resolution optimization model for reservoir's selective depth water withdrawal considering water quality.
    Haghighat M; Nikoo MR; Parvinnia M; Sadegh M
    Environ Sci Pollut Res Int; 2021 Jan; 28(3):3035-3050. PubMed ID: 32909133
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Implementation of the new easy approach to fuzzy multi-criteria decision aid in the field of management.
    Ziemba P
    MethodsX; 2021; 8():101344. PubMed ID: 34430248
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.
    Jiménez F; Sánchez G; Juárez JM
    Artif Intell Med; 2014 Mar; 60(3):197-219. PubMed ID: 24525210
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sequential treatment of paper and pulp industrial wastewater: Prediction of water quality parameters by Mamdani Fuzzy Logic model and phytotoxicity assessment.
    Mazhar S; Ditta A; Bulgariu L; Ahmad I; Ahmed M; Nadiri AA
    Chemosphere; 2019 Jul; 227():256-268. PubMed ID: 30991200
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A scenario-based MCDA framework for wastewater infrastructure planning under uncertainty.
    Zheng J; Egger C; Lienert J
    J Environ Manage; 2016 Dec; 183(Pt 3):895-908. PubMed ID: 27666649
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An imprecise fuzzy risk approach for water quality management of a river system.
    Rehana S; Mujumdar PP
    J Environ Manage; 2009 Aug; 90(11):3653-64. PubMed ID: 19674829
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effluent trading in river systems through stochastic decision-making process: a case study.
    Zolfagharipoor MA; Ahmadi A
    Environ Sci Pollut Res Int; 2017 Sep; 24(25):20655-20672. PubMed ID: 28712084
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multi-objective synchronous calibration and Pareto optimality of runoff and sediment parameters in an arid and semi-arid watershed.
    Wu L; Liu X; Chen J; Ma X
    Environ Sci Pollut Res Int; 2023 May; 30(24):65470-65481. PubMed ID: 37085679
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A simulation-optimization approach for supporting conservative water allocation under uncertainties.
    Cai Y; Li T; Zhang Y; Zhang X
    J Environ Manage; 2022 Aug; 315():115073. PubMed ID: 35525037
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multi-period evaluation and selection of rural wastewater treatment technologies: a case study.
    Zhang F; Ju Y; Dong P; Wang A; Santibanez Gonzalez EDR
    Environ Sci Pollut Res Int; 2020 Dec; 27(36):45897-45910. PubMed ID: 32804380
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An integrated decision making approach for selecting a sustainable waste water treatment technology.
    Narayanamoorthy S; Brainy JV; Sulaiman R; Ferrara M; Ahmadian A; Kang D
    Chemosphere; 2022 Aug; 301():134568. PubMed ID: 35439483
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Land Suitability Evaluation and an Interval Stochastic Fuzzy Programming-Based Optimization Model for Land-Use Planning and Environmental Policy Analysis.
    Zhang Z; Zhou M; Ou G; Tan S; Song Y; Zhang L; Nie X
    Int J Environ Res Public Health; 2019 Oct; 16(21):. PubMed ID: 31717718
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A stochastic conflict resolution model for trading pollutant discharge permits in river systems.
    Niksokhan MH; Kerachian R; Amin P
    Environ Monit Assess; 2009 Jul; 154(1-4):219-32. PubMed ID: 18592387
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Emergency material location-allocation planning using a risk-based integration methodology for river chemical spills.
    Liu J; Jiang D; Guo L; Nan J; Cao W; Wang P
    Environ Sci Pollut Res Int; 2020 May; 27(15):17949-17962. PubMed ID: 32166691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.