These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 31243634)
1. NMR and MD studies combined to elucidate inhibitor and water interactions of HIV-1 protease and their modulations with resistance mutations. Ishima R; Kurt Yilmaz N; Schiffer CA J Biomol NMR; 2019 Jul; 73(6-7):365-374. PubMed ID: 31243634 [TBL] [Abstract][Full Text] [Related]
2. Characterizing early drug resistance-related events using geometric ensembles from HIV protease dynamics. Sheik Amamuddy O; Bishop NT; Tastan Bishop Ö Sci Rep; 2018 Dec; 8(1):17938. PubMed ID: 30560871 [TBL] [Abstract][Full Text] [Related]
3. Exploring the drug resistance mechanism of active site, non-active site mutations and their cooperative effects in CRF01_AE HIV-1 protease: molecular dynamics simulations and free energy calculations. C S V; Tamizhselvi R; Munusami P J Biomol Struct Dyn; 2019 Jul; 37(10):2608-2626. PubMed ID: 30051758 [TBL] [Abstract][Full Text] [Related]
4. Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: flap dynamics and binding mechanism. Meher BR; Wang Y J Mol Graph Model; 2015 Mar; 56():60-73. PubMed ID: 25562662 [TBL] [Abstract][Full Text] [Related]
5. Computational Studies of a Mechanism for Binding and Drug Resistance in the Wild Type and Four Mutations of HIV-1 Protease with a GRL-0519 Inhibitor. Hu G; Ma A; Dou X; Zhao L; Wang J Int J Mol Sci; 2016 May; 17(6):. PubMed ID: 27240358 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics and ligand docking of a hinge region variant of South African HIV-1 subtype C protease. Zondagh J; Balakrishnan V; Achilonu I; Dirr HW; Sayed Y J Mol Graph Model; 2018 Jun; 82():1-11. PubMed ID: 29625416 [TBL] [Abstract][Full Text] [Related]
7. HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs. Perryman AL; Lin JH; McCammon JA Protein Sci; 2004 Apr; 13(4):1108-23. PubMed ID: 15044738 [TBL] [Abstract][Full Text] [Related]
8. Pressure-induced structural transition of mature HIV-1 protease from a combined NMR/MD simulation approach. Roche J; Louis JM; Bax A; Best RB Proteins; 2015 Dec; 83(12):2117-23. PubMed ID: 26385843 [TBL] [Abstract][Full Text] [Related]
9. Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach. Jenwitheesuk E; Samudrala R Antivir Ther; 2005; 10(1):157-66. PubMed ID: 15751773 [TBL] [Abstract][Full Text] [Related]
10. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights. Chetty S; Bhakat S; Martin AJ; Soliman ME J Biomol Struct Dyn; 2016; 34(1):135-51. PubMed ID: 25671669 [TBL] [Abstract][Full Text] [Related]
11. Hydration Structure and Dynamics of Inhibitor-Bound HIV-1 Protease. Leidner F; Kurt Yilmaz N; Paulsen J; Muller YA; Schiffer CA J Chem Theory Comput; 2018 May; 14(5):2784-2796. PubMed ID: 29570286 [TBL] [Abstract][Full Text] [Related]
12. Structural studies on molecular mechanisms of Nelfinavir resistance caused by non-active site mutation V77I in HIV-1 protease. Gupta A; Jamal S; Goyal S; Jain R; Wahi D; Grover A BMC Bioinformatics; 2015; 16 Suppl 19(Suppl 19):S10. PubMed ID: 26695135 [TBL] [Abstract][Full Text] [Related]
13. Structural and thermodynamic basis of resistance to HIV-1 protease inhibition: implications for inhibitor design. Velazquez-Campoy A; Muzammil S; Ohtaka H; Schön A; Vega S; Freire E Curr Drug Targets Infect Disord; 2003 Dec; 3(4):311-28. PubMed ID: 14754432 [TBL] [Abstract][Full Text] [Related]
14. Structural and binding insights into HIV-1 protease and P2-ligand interactions through molecular dynamics simulations, binding free energy and principal component analysis. Karnati KR; Wang Y J Mol Graph Model; 2019 Nov; 92():112-122. PubMed ID: 31351319 [TBL] [Abstract][Full Text] [Related]
15. Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir. Yu Y; Wang J; Shao Q; Shi J; Zhu W Sci Rep; 2015 May; 5():10517. PubMed ID: 26012849 [TBL] [Abstract][Full Text] [Related]
16. Could the FDA-approved anti-HIV PR inhibitors be promising anticancer agents? An answer from enhanced docking approach and molecular dynamics analyses. Arodola OA; Soliman ME Drug Des Devel Ther; 2015; 9():6055-65. PubMed ID: 26622167 [TBL] [Abstract][Full Text] [Related]
17. Flap-site Fragment Restores Back Wild-type Behaviour in Resistant Form of HIV Protease. Luchi A; Angelina E; Bogado L; Forli S; Olson A; Peruchena N Mol Inform; 2018 Dec; 37(12):e1800053. PubMed ID: 30051611 [TBL] [Abstract][Full Text] [Related]
18. Modeling the full length HIV-1 Gag polyprotein reveals the role of its p6 subunit in viral maturation and the effect of non-cleavage site mutations in protease drug resistance. Su CT; Kwoh CK; Verma CS; Gan SK J Biomol Struct Dyn; 2018 Dec; 36(16):4366-4377. PubMed ID: 29237328 [TBL] [Abstract][Full Text] [Related]
19. Synthesis, 2D-NMR and molecular modelling studies of pentacycloundecane lactam-peptides and peptoids as potential HIV-1 wild type C-SA protease inhibitors. Makatini MM; Petzold K; Alves CN; Arvidsson PI; Honarparvar B; Govender P; Govender T; Kruger HG; Sayed Y; JerônimoLameira ; Maguire GE; Soliman ME J Enzyme Inhib Med Chem; 2013 Feb; 28(1):78-88. PubMed ID: 22339087 [TBL] [Abstract][Full Text] [Related]
20. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance. Muzammil S; Ross P; Freire E Biochemistry; 2003 Jan; 42(3):631-8. PubMed ID: 12534275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]