These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
491 related articles for article (PubMed ID: 31243656)
1. A paddy field study of arsenic and cadmium pollution control by using iron-modified biochar and silica sol together. Pan D; Liu C; Yu H; Li F Environ Sci Pollut Res Int; 2019 Aug; 26(24):24979-24987. PubMed ID: 31243656 [TBL] [Abstract][Full Text] [Related]
2. Iron-modified phosphorus- and silicon-based biochars exhibited various influences on arsenic, cadmium, and lead accumulation in rice and enzyme activities in a paddy soil. Yang X; Wen E; Ge C; El-Naggar A; Yu H; Wang S; Kwon EE; Song H; Shaheen SM; Wang H; Rinklebe J J Hazard Mater; 2023 Feb; 443(Pt B):130203. PubMed ID: 36327835 [TBL] [Abstract][Full Text] [Related]
3. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system. Rajendran M; Shi L; Wu C; Li W; An W; Liu Z; Xue S Chemosphere; 2019 May; 222():314-322. PubMed ID: 30708165 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Qiao JT; Liu TX; Wang XQ; Li FB; Lv YH; Cui JH; Zeng XD; Yuan YZ; Liu CP Chemosphere; 2018 Mar; 195():260-271. PubMed ID: 29272795 [TBL] [Abstract][Full Text] [Related]
5. Effect of calcium and iron-enriched biochar on arsenic and cadmium accumulation from soil to rice paddy tissues. Islam MS; Magid ASIA; Chen Y; Weng L; Ma J; Arafat MY; Khan ZH; Li Y Sci Total Environ; 2021 Sep; 785():147163. PubMed ID: 33940407 [TBL] [Abstract][Full Text] [Related]
6. Goethite modified biochar simultaneously mitigates the arsenic and cadmium accumulation in paddy rice (Oryza sativa) L. Irshad MK; Noman A; Wang Y; Yin Y; Chen C; Shang J Environ Res; 2022 Apr; 206():112238. PubMed ID: 34688646 [TBL] [Abstract][Full Text] [Related]
7. [Using Biochar and Iron-calcium Material to Remediate Paddy Soil Contaminated by Cadmium and Arsenic]. Wu QC; Wu JZ; Zhao KL; Lian B; Yuan F; Sun Q; Tian X Huan Jing Ke Xue; 2024 Jan; 45(1):450-458. PubMed ID: 38216494 [TBL] [Abstract][Full Text] [Related]
8. Impacts of biochar and silicate fertilizer on arsenic accumulation in rice (Oryza sativa L.). Jin W; Wang Z; Sun Y; Wang Y; Bi C; Zhou L; Zheng X Ecotoxicol Environ Saf; 2020 Feb; 189():109928. PubMed ID: 31767458 [TBL] [Abstract][Full Text] [Related]
9. Biochar-supported nanoscale zero-valent iron can simultaneously decrease cadmium and arsenic uptake by rice grains in co-contaminated soil. Yang D; Zhang J; Yang S; Wang Y; Tang X; Xu J; Liu X Sci Total Environ; 2022 Mar; 814():152798. PubMed ID: 34990662 [TBL] [Abstract][Full Text] [Related]
10. Pristine/magnesium-loaded biochar and ZVI affect rice grain arsenic speciation and cadmium accumulation through different pathways in an alkaline paddy soil. Zhang C; Shi D; Wang C; Sun G; Li H; Hu Y; Li X; Hou Y; Zheng R J Environ Sci (China); 2025 Jan; 147():630-641. PubMed ID: 39003078 [TBL] [Abstract][Full Text] [Related]
11. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system. Yin D; Wang X; Peng B; Tan C; Ma LQ Chemosphere; 2017 Nov; 186():928-937. PubMed ID: 28830065 [TBL] [Abstract][Full Text] [Related]
12. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon. Yu HY; Ding X; Li F; Wang X; Zhang S; Yi J; Liu C; Xu X; Wang Q Environ Pollut; 2016 Aug; 215():258-265. PubMed ID: 27209244 [TBL] [Abstract][Full Text] [Related]
13. Effects of nano-Fe Zhang JY; Zhou H; Gu JF; Huang F; Yang WJ; Wang SL; Yuan TY; Liao BH Environ Pollut; 2020 May; 260():113970. PubMed ID: 32014742 [TBL] [Abstract][Full Text] [Related]
14. Iron modification to silicon-rich biochar and alternative water management to decrease arsenic accumulation in rice (Oryza sativa L.). Kumarathilaka P; Bundschuh J; Seneweera S; Marchuk A; Ok YS Environ Pollut; 2021 Oct; 286():117661. PubMed ID: 34438503 [TBL] [Abstract][Full Text] [Related]
15. Goethite-modified biochar restricts the mobility and transfer of cadmium in soil-rice system. Kashif Irshad M; Chen C; Noman A; Ibrahim M; Adeel M; Shang J Chemosphere; 2020 Mar; 242():125152. PubMed ID: 31669984 [TBL] [Abstract][Full Text] [Related]
17. Effectiveness of simultaneous applications of lime and zinc/iron foliar sprays to minimize cadmium accumulation in rice. Duan MM; Wang S; Huang DY; Zhu QH; Liu SL; Zhang Q; Zhu HH; Xu C Ecotoxicol Environ Saf; 2018 Dec; 165():510-515. PubMed ID: 30223163 [TBL] [Abstract][Full Text] [Related]
18. Effects of Fe-Mn-Ce oxide-modified biochar on As accumulation, morphology, and quality of rice (Oryza sativa L.). Lian F; Liu X; Gao M; Li H; Qiu W; Song Z Environ Sci Pollut Res Int; 2020 May; 27(15):18196-18207. PubMed ID: 32172416 [TBL] [Abstract][Full Text] [Related]
19. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100 [TBL] [Abstract][Full Text] [Related]
20. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Yu Z; Qiu W; Wang F; Lei M; Wang D; Song Z Chemosphere; 2017 Feb; 168():341-349. PubMed ID: 27810533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]