These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 31243659)
1. A review of organophosphorus flame retardants (OPFRs): occurrence, bioaccumulation, toxicity, and organism exposure. Du J; Li H; Xu S; Zhou Q; Jin M; Tang J Environ Sci Pollut Res Int; 2019 Aug; 26(22):22126-22136. PubMed ID: 31243659 [TBL] [Abstract][Full Text] [Related]
2. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research. Hou R; Xu Y; Wang Z Chemosphere; 2016 Jun; 153():78-90. PubMed ID: 27010170 [TBL] [Abstract][Full Text] [Related]
3. A Review of a Class of Emerging Contaminants: The Classification, Distribution, Intensity of Consumption, Synthesis Routes, Environmental Effects and Expectation of Pollution Abatement to Organophosphate Flame Retardants (OPFRs). Yang J; Zhao Y; Li M; Du M; Li X; Li Y Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31212857 [TBL] [Abstract][Full Text] [Related]
4. [Progress in environmental exposure of organophosphate flame retardants]. Ding JJ; Yang FX Zhonghua Yu Fang Yi Xue Za Zhi; 2017 Jun; 51(6):570-576. PubMed ID: 28592106 [TBL] [Abstract][Full Text] [Related]
5. Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance. Alzualde A; Behl M; Sipes NS; Hsieh JH; Alday A; Tice RR; Paules RS; Muriana A; Quevedo C Neurotoxicol Teratol; 2018; 70():40-50. PubMed ID: 30312655 [TBL] [Abstract][Full Text] [Related]
6. Priority and emerging flame retardants in rivers: occurrence in water and sediment, Daphnia magna toxicity and risk assessment. Cristale J; García Vázquez A; Barata C; Lacorte S Environ Int; 2013 Sep; 59():232-43. PubMed ID: 23845937 [TBL] [Abstract][Full Text] [Related]
7. Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity. Behl M; Hsieh JH; Shafer TJ; Mundy WR; Rice JR; Boyd WA; Freedman JH; Hunter ES; Jarema KA; Padilla S; Tice RR Neurotoxicol Teratol; 2015; 52(Pt B):181-93. PubMed ID: 26386178 [TBL] [Abstract][Full Text] [Related]
8. Developmental exposure of zebrafish larvae to organophosphate flame retardants causes neurotoxicity. Sun L; Xu W; Peng T; Chen H; Ren L; Tan H; Xiao D; Qian H; Fu Z Neurotoxicol Teratol; 2016; 55():16-22. PubMed ID: 27018022 [TBL] [Abstract][Full Text] [Related]
9. In vitro biolayer interferometry analysis of acetylcholinesterase as a potential target of aryl-organophosphorus flame-retardants. Shi Q; Guo W; Shen Q; Han J; Lei L; Chen L; Yang L; Feng C; Zhou B J Hazard Mater; 2021 May; 409():124999. PubMed ID: 33454525 [TBL] [Abstract][Full Text] [Related]
10. Bioaccumulation of organophosphorus flame retardants in the marine mussel Mytilus galloprovincialis. Mata MC; Castro V; Quintana JB; Rodil R; Beiras R; Vidal-Liñán L Sci Total Environ; 2022 Jan; 805():150384. PubMed ID: 34818755 [TBL] [Abstract][Full Text] [Related]
11. Bioaccumulation of organophosphorus flame retardants in marine organisms in Liaodong Bay and their potential ecological risks based on species sensitivity distribution. Wang S; Zheng N; Sun S; Ji Y; An Q; Li X; Li Z; Zhang W Environ Pollut; 2023 Jan; 317():120812. PubMed ID: 36473644 [TBL] [Abstract][Full Text] [Related]
12. Organophosphate flame retardants and plasticizers in sediment and bivalves along the Korean coast: Occurrence, geographical distribution, and a potential for bioaccumulation. Choi W; Lee S; Lee HK; Moon HB Mar Pollut Bull; 2020 Jul; 156():111275. PubMed ID: 32510414 [TBL] [Abstract][Full Text] [Related]
13. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of southern China and implications for human exposure. He CT; Zheng J; Qiao L; Chen SJ; Yang JZ; Yuan JG; Yang ZY; Mai BX Chemosphere; 2015 Aug; 133():47-52. PubMed ID: 25898308 [TBL] [Abstract][Full Text] [Related]
14. Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus). Deng Y; Zhang Y; Qiao R; Bonilla MM; Yang X; Ren H; Lemos B J Hazard Mater; 2018 Sep; 357():348-354. PubMed ID: 29908513 [TBL] [Abstract][Full Text] [Related]
15. Computational simulation associated with biological effects of alkyl organophosphate flame retardants with different carbon chain lengths on Chlorella pyrenoidosa. Chu Y; Zhang C; Ho SH Chemosphere; 2021 Jan; 263():127997. PubMed ID: 32846289 [TBL] [Abstract][Full Text] [Related]
16. Organophosphorus flame retardants and plasticizers: sources, occurrence, toxicity and human exposure. Wei GL; Li DQ; Zhuo MN; Liao YS; Xie ZY; Guo TL; Li JJ; Zhang SY; Liang ZQ Environ Pollut; 2015 Jan; 196():29-46. PubMed ID: 25290907 [TBL] [Abstract][Full Text] [Related]
17. Cytotoxicity evaluation of organophosphorus flame retardants using electrochemical biosensors and elucidation of associated toxic mechanisms. Zhu X; Zheng H; Zhang Z; Ma S; Feng Q; Wang J; Wu G; Ng HY Water Res; 2024 Nov; 265():122262. PubMed ID: 39167971 [TBL] [Abstract][Full Text] [Related]
18. Monitoring and exposure assessment of organophosphorus flame retardants in source and drinking water, Nanjing, China. Liu X; Xiong L; Li D; Chen C; Cao Q Environ Monit Assess; 2019 Jan; 191(2):119. PubMed ID: 30706205 [TBL] [Abstract][Full Text] [Related]
19. A review on organophosphate flame retardants in the environment: Occurrence, accumulation, metabolism and toxicity. Yao C; Yang H; Li Y Sci Total Environ; 2021 Nov; 795():148837. PubMed ID: 34246143 [TBL] [Abstract][Full Text] [Related]
20. Affinities of organophosphate flame retardants to tumor suppressor gene p53: an integrated in vitro and in silico study. Li F; Cao L; Li X; Li N; Wang Z; Wu H Toxicol Lett; 2015 Jan; 232(2):533-41. PubMed ID: 25510514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]