These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. The new NO donor Terpy induces similar relaxation in mesenteric resistance arteries of renal hypertensive and normotensive rats. Araújo AV; Pereira AC; Grando MD; da Silva RS; Bendhack LM Nitric Oxide; 2013 Nov; 35():47-53. PubMed ID: 23968803 [TBL] [Abstract][Full Text] [Related]
11. The 2-nitrate-1,3-dibuthoxypropan, a new nitric oxide donor, induces vasorelaxation in mesenteric arteries of the rat. França-Silva MS; Luciano MN; Ribeiro TP; Silva JS; Santos AF; França KC; Nakao LS; Athayde-Filho PF; Braga VA; Medeiros IA Eur J Pharmacol; 2012 Sep; 690(1-3):170-5. PubMed ID: 22796675 [TBL] [Abstract][Full Text] [Related]
12. Inhaled nitric oxide decreases pulmonary soluble guanylate cyclase protein levels in 1-month-old lambs. Thelitz S; Bekker JM; Ovadia B; Stuart RB; Johengen MJ; Black SM; Fineman JR J Thorac Cardiovasc Surg; 2004 May; 127(5):1285-92. PubMed ID: 15115984 [TBL] [Abstract][Full Text] [Related]
13. Role of sulfhydryl-dependent dimerization of soluble guanylyl cyclase in relaxation of porcine coronary artery to nitric oxide. Zheng X; Ying L; Liu J; Dou D; He Q; Leung SW; Man RY; Vanhoutte PM; Gao Y Cardiovasc Res; 2011 Jun; 90(3):565-72. PubMed ID: 21248051 [TBL] [Abstract][Full Text] [Related]
14. Soluble guanylate cyclase is required for systemic vasodilation but not positive inotropy induced by nitroxyl in the mouse. Zhu G; Groneberg D; Sikka G; Hori D; Ranek MJ; Nakamura T; Takimoto E; Paolocci N; Berkowitz DE; Friebe A; Kass DA Hypertension; 2015 Feb; 65(2):385-92. PubMed ID: 25452469 [TBL] [Abstract][Full Text] [Related]
15. Prolonged relaxation consistent with persistent soluble guanylyl cyclase activation in canine pulmonary artery following brief treatment with nitric oxide donors. Kwak YL; Jones KA; Warner DO; Perkins WJ Life Sci; 2006 Oct; 79(21):2001-9. PubMed ID: 16854434 [TBL] [Abstract][Full Text] [Related]
16. Heterogeneity in endothelium-derived nitric oxide-mediated relaxation of different sized pulmonary arteries of newborn lambs. Gao Y; Tolsa JF; Raj JU Pediatr Res; 1998 Nov; 44(5):723-9. PubMed ID: 9803454 [TBL] [Abstract][Full Text] [Related]
17. Role of Ca(2+)-dependent K+ channels in cerebral vasodilatation induced by increases in cyclic GMP and cyclic AMP in the rat. Paternò R; Faraci FM; Heistad DD Stroke; 1996 Sep; 27(9):1603-7; discussion 1607-8. PubMed ID: 8784136 [TBL] [Abstract][Full Text] [Related]
18. Redox Mechanisms Influencing cGMP Signaling in Pulmonary Vascular Physiology and Pathophysiology. Patel D; Lakhkar A; Wolin MS Adv Exp Med Biol; 2017; 967():227-240. PubMed ID: 29047089 [TBL] [Abstract][Full Text] [Related]
19. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed. Pimentel AM; Costa CA; Carvalho LC; Brandão RM; Rangel BM; Tano T; Soares de Moura R; Resende AC Vascul Pharmacol; 2007 May; 46(5):353-9. PubMed ID: 17258511 [TBL] [Abstract][Full Text] [Related]
20. Low-level lead exposure changes endothelial modulation in rat resistance pulmonary arteries. Covre EP; Freire DD; Dalfior BM; Marques VB; Ribeiro RF; Carneiro Lima MTWD; Dos Santos L Vascul Pharmacol; 2016 Oct; 85():21-28. PubMed ID: 27389002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]