These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31243688)

  • 1. Boundary shapes guide selection of reference points in goal localization.
    Zhou R; Mou W
    Atten Percept Psychophys; 2019 Oct; 81(7):2482-2498. PubMed ID: 31243688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of cue placement on the relative dominance of boundaries and landmark arrays in goal localization.
    Zhou R; Mou W
    Q J Exp Psychol (Hove); 2019 Nov; 72(11):2614-2631. PubMed ID: 31104568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining a boundary in goal localization: Infinite number of points or extended surfaces.
    Mou W; Zhou R
    J Exp Psychol Learn Mem Cogn; 2013 Jul; 39(4):1115-27. PubMed ID: 23088544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of spatial stability and cue type on spatial learning: Implications for theories of parallel memory systems.
    Buckley MG; Austen JM; Myles LAM; Smith S; Ihssen N; Lew AR; McGregor A
    Cognition; 2021 Sep; 214():104802. PubMed ID: 34225248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The limits of boundaries: unpacking localization and cognitive mapping relative to a boundary.
    Zhou R; Mou W
    Psychol Res; 2018 May; 82(3):617-633. PubMed ID: 28101648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enclosure shape influences cue competition effects and goal location learning.
    Wilson PN; Alexander T
    Q J Exp Psychol (Hove); 2010 Aug; 63(8):1552-67. PubMed ID: 20119881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facilitation of learning spatial relations among locations by visual cues: generality across spatial configurations.
    Sturz BR; Kelly DM; Brown MF
    Anim Cogn; 2010 Mar; 13(2):341-9. PubMed ID: 19777275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometric cues, reference frames, and the equivalence of experienced-aligned and novel-aligned views in human spatial memory.
    Kelly JW; Sjolund LA; Sturz BR
    Cognition; 2013 Mar; 126(3):459-74. PubMed ID: 23305700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of landmarks and boundaries in the development of spatial memory.
    Bullens J; Nardini M; Doeller CF; Braddick O; Postma A; Burgess N
    Dev Sci; 2010 Jan; 13(1):170-80. PubMed ID: 20121873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learned predictiveness training modulates biases towards using boundary or landmark cues during navigation.
    Buckley MG; Smith AD; Haselgrove M
    Q J Exp Psychol (Hove); 2015; 68(6):1183-202. PubMed ID: 25409751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Object location memory: integration and competition between multiple context objects but not between observers' body and context objects.
    Mou W; Spetch ML
    Cognition; 2013 Feb; 126(2):181-97. PubMed ID: 23142038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cue reliability and a landmark stability heuristic determine relative weighting between egocentric and allocentric visual information in memory-guided reach.
    Byrne PA; Crawford JD
    J Neurophysiol; 2010 Jun; 103(6):3054-69. PubMed ID: 20457858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rat spatial memory tasks adapted for humans: characterization in subjects with intact brain and subjects with selective medial temporal lobe thermal lesions.
    Bohbot VD; Jech R; Růzicka E; Nadel L; Kalina M; Stepánková K; Bures J
    Physiol Res; 2002; 51 Suppl 1():S49-65. PubMed ID: 12479786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of room size on geometry and features cue preference during reorientation: Modulating encoding strength or cue weighting.
    Wang L; Mou W
    Q J Exp Psychol (Hove); 2020 Feb; 73(2):225-238. PubMed ID: 31390927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrinsic reference frames modify the neural substrates of object-location representations.
    Chan E; Baumann O; Bellgrove MA; Mattingley JB
    Neuropsychologia; 2013 Apr; 51(5):781-8. PubMed ID: 23422330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allocentric information is used for memory-guided reaching in depth: A virtual reality study.
    Klinghammer M; Schütz I; Blohm G; Fiehler K
    Vision Res; 2016 Dec; 129():13-24. PubMed ID: 27789230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cue integration in spatial search for jointly learned landmarks but not for separately learned landmarks.
    Du Y; McMillan N; Madan CR; Spetch ML; Mou W
    J Exp Psychol Learn Mem Cogn; 2017 Dec; 43(12):1857-1871. PubMed ID: 28504533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From maps to navigation: the role of cues in finding locations in a virtual environment.
    Hutcheson AT; Wedell DH
    Mem Cognit; 2012 Aug; 40(6):946-57. PubMed ID: 22351565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Of "what" and "where" in a natural search task: Active object handling supports object location memory beyond the object's identity.
    Draschkow D; Võ ML
    Atten Percept Psychophys; 2016 Aug; 78(6):1574-84. PubMed ID: 27165170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coding Locations Relative to One or Many Landmarks in Childhood.
    Negen J; Bou Ali L; Chere B; Roome HE; Park Y; Nardini M
    PLoS Comput Biol; 2019 Oct; 15(10):e1007380. PubMed ID: 31658253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.