These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 31244023)

  • 1. Oxygen-Vacancy-Dominated Cocatalyst/Hematite Interface for Boosting Solar Water Splitting.
    Wang L; Zhu J; Liu X
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22272-22277. PubMed ID: 31244023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting the Performance of BiVO
    Sun Q; Ren K; Qi L
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37833-37842. PubMed ID: 35957577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CoMoO
    Zhang G; Lu C; Li C; Li S; Zhao X; Nie K; Wang J; Feng K; Zhong J
    Phys Chem Chem Phys; 2023 May; 25(19):13410-13416. PubMed ID: 37161656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma-Induced Oxygen Vacancies in Ultrathin Hematite Nanoflakes Promoting Photoelectrochemical Water Oxidation.
    Zhu C; Li C; Zheng M; Delaunay JJ
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22355-63. PubMed ID: 26400020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Modification of Hematite Photoanodes with CeO
    Ahmed MG; Zhang M; Tay YF; Chiam SY; Wong LH
    ChemSusChem; 2020 Oct; 13(20):5489-5496. PubMed ID: 32776429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Balancing charge recombination and hole transfer rates in hematite photoanodes by modulating the Co
    Xiao J; Jia X; Du B; Zhong Z; Li C; Sun J; Nie Z; Zhang X; Wang B
    J Colloid Interface Sci; 2024 Jan; 654(Pt B):915-924. PubMed ID: 37898075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activating the surface and bulk of hematite photoanodes to improve solar water splitting.
    Zhang H; Park JH; Byun WJ; Song MH; Lee JS
    Chem Sci; 2019 Nov; 10(44):10436-10444. PubMed ID: 32110336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deposition of FeOOH Layer on Ultrathin Hematite Nanoflakes to Promote Photoelectrochemical Water Splitting.
    Zhang W; Zhang Y; Miao X; Zhao L; Zhu C
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Photoelectrochemical Water Oxidation on Hematite with Fluorine-Doped FeOOH and FeNiOOH as Dual Cocatalysts.
    Deng J; Zhang Q; Feng K; Lan H; Zhong J; Chaker M; Ma D
    ChemSusChem; 2018 Nov; 11(21):3783-3789. PubMed ID: 30215886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lowering the onset potential of Zr-doped hematite nanocoral photoanodes by Al co-doping and surface modification with electrodeposited Co-Pi.
    Jeong IK; Mahadik MA; Hwang JB; Chae WS; Choi SH; Jang JS
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):751-763. PubMed ID: 32818679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ge-Doped Hematite with FeCoNi-B
    Wang Y; Cui S; Tian Z; Han M; Zhao T; Li W
    Small; 2024 May; ():e2400316. PubMed ID: 38716992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational construction of S-doped FeOOH onto Fe
    Duc Quang N; Cao Van P; Majumder S; Jeong JR; Kim D; Kim C
    J Colloid Interface Sci; 2022 Jun; 616():749-758. PubMed ID: 35247813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of defect-rich Co-CeO
    Pal D; Maity D; Sarkar A; Sarkar D; Khan GG
    J Colloid Interface Sci; 2022 Aug; 620():209-220. PubMed ID: 35428003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting Charge Transfer Efficiency by Nanofragment MXene for Efficient Photoelectrochemical Water Splitting of NiFe(OH)
    Park J; Yoon KY; Kwak MJ; Kang J; Kim S; Chaule S; Ha SJ; Jang JH
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36749965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting.
    Gao RT; Zhang J; Nakajima T; He J; Liu X; Zhang X; Wang L; Wu L
    Nat Commun; 2023 May; 14(1):2640. PubMed ID: 37156781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface engineering of hematite nanorods photoanode towards optimized photoelectrochemical water splitting.
    Li Z; Wu J; Liao L; He X; Huang B; Zhang S; Wei Y; Wang S; Zhou W
    J Colloid Interface Sci; 2022 Nov; 626():879-888. PubMed ID: 35835039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ XAS study of CoB
    Xi L; Schwanke C; Zhou D; Drevon D; van de Krol R; Lange KM
    Dalton Trans; 2017 Nov; 46(45):15719-15726. PubMed ID: 29095446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insight into the roles of oxygen vacancies in hematite for solar water splitting.
    Zhao X; Feng J; Chen S; Huang Y; Sum TC; Chen Z
    Phys Chem Chem Phys; 2017 Jan; 19(2):1074-1082. PubMed ID: 27858025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interface Engineering of CoFe-LDH Modified Ti: α-Fe
    Chang Y; Han M; Ding Y; Wei H; Zhang D; Luo H; Li X; Yan X
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.