These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31244069)

  • 1. Algal Foods Reduce the Uptake of Hematite Nanoparticles by Downregulating Water Filtration in Daphnia magna.
    Liu YY; Guo WB; Zhao YT; Xu S; Yang LY; Miao AJ
    Environ Sci Technol; 2019 Jul; 53(13):7803-7811. PubMed ID: 31244069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation Reverses the Carrier Effects of TiO
    Tan LY; Huang B; Xu S; Wei ZB; Yang LY; Miao AJ
    Environ Sci Technol; 2017 Jan; 51(2):932-939. PubMed ID: 27984694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures.
    Wu F; Bortvedt A; Harper BJ; Crandon LE; Harper SL
    Aquat Toxicol; 2017 Sep; 190():78-86. PubMed ID: 28697458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Waterborne and dietary accumulation of well-dispersible hematite nanoparticles by zebrafish at different life stages.
    Huang B; Cui YQ; Guo WB; Yang L; Miao AJ
    Environ Pollut; 2020 Apr; 259():113852. PubMed ID: 31887592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteria compete with hematite nanoparticles during their uptake by the ciliate Tetrahymena thermophila.
    Guo WB; Yang LY; Miao AJ
    J Hazard Mater; 2021 Jun; 411():125098. PubMed ID: 33858088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure to sublethal concentrations of Co
    Heinlaan M; Muna M; Juganson K; Oriekhova O; Stoll S; Kahru A; Slaveykova VI
    Aquat Toxicol; 2017 Aug; 189():123-133. PubMed ID: 28623688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trophic transfer of gold nanoparticles from Euglena gracilis or Chlamydomonas reinhardtii to Daphnia magna.
    Lee WM; Yoon SJ; Shin YJ; An YJ
    Environ Pollut; 2015 Jun; 201():10-6. PubMed ID: 25756227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silica Nanoparticle Size Determines the Mechanisms Underlying the Inhibition of Iron Oxide Nanoparticle Uptake by
    Liu YY; Pan W; Wang M; Zhang KD; Zhang HJ; Huang B; Zhang W; Tan QG; Miao AJ
    Environ Sci Technol; 2024 Jan; 58(1):751-759. PubMed ID: 38113379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined Toxicity of Silver Nanoparticles with Hematite or Plastic Nanoparticles toward Two Freshwater Algae.
    Huang B; Wei ZB; Yang LY; Pan K; Miao AJ
    Environ Sci Technol; 2019 Apr; 53(7):3871-3879. PubMed ID: 30882224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TiO2 Nanoparticle Uptake by the Water Flea Daphnia magna via Different Routes is Calcium-Dependent.
    Tan LY; Huang B; Xu S; Wei ZB; Yang LY; Miao AJ
    Environ Sci Technol; 2016 Jul; 50(14):7799-807. PubMed ID: 27359244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The protective roles of TiO
    Liu J; Wang WX
    Sci Total Environ; 2017 Sep; 593-594():47-53. PubMed ID: 28342417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation and elimination of aqueous and dietary silver in Daphnia magna.
    Lam IK; Wang WX
    Chemosphere; 2006 Jun; 64(1):26-35. PubMed ID: 16442147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Imaging of Silver Nanoparticle Uptake by a Unicellular Alga and Trophic Transfer to
    Yan N; Wang WX
    Environ Sci Technol; 2021 Apr; 55(8):5143-5151. PubMed ID: 33726495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A trophic transfer study: accumulation of multi-walled carbon nanotubes associated to green algae in water flea Daphnia magna.
    Politowski I; Wittmers F; Hennig MP; Siebers N; Goffart B; Roß-Nickoll M; Ottermanns R; Schäffer A
    NanoImpact; 2021 Apr; 22():100303. PubMed ID: 35559960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of subcellular distribution on nC₆₀ uptake and transfer efficiency from Scenedesmus obliquus to Daphnia magna.
    Chen Q; Hu X; Yin D; Wang R
    Ecotoxicol Environ Saf; 2016 Jun; 128():213-21. PubMed ID: 26946286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internalization of the Metal-Organic Framework MIL-101(Cr)-NH
    Li Y; Wang WX
    Environ Sci Technol; 2023 Jan; 57(1):118-127. PubMed ID: 36503235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms underlying the calcium-mediated uptake of hematite nanoparticles by the ciliate Tetrahymena thermophila.
    Wu C; Guo WB; Liu YY; Yang L; Miao AJ
    Environ Pollut; 2021 Nov; 288():117749. PubMed ID: 34329064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic multipathway modeling of Cd bioaccumulation in Daphnia magna using waterborne and dietborne exposures.
    Goulet RR; Krack S; Doyle PJ; Hare L; Vigneault B; McGeer JC
    Aquat Toxicol; 2007 Feb; 81(2):117-25. PubMed ID: 17173986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: particles outperform dissolved ions.
    Ye N; Wang Z; Wang S; Peijnenburg WJGM
    Nanotoxicology; 2018 Jun; 12(5):423-438. PubMed ID: 29658385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests.
    Van Hoecke K; Quik JT; Mankiewicz-Boczek J; De Schamphelaere KA; Elsaesser A; Van der Meeren P; Barnes C; McKerr G; Howard CV; Van de Meent D; Rydzyński K; Dawson KA; Salvati A; Lesniak A; Lynch I; Silversmit G; De Samber B; Vincze L; Janssen CR
    Environ Sci Technol; 2009 Jun; 43(12):4537-46. PubMed ID: 19603674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.