These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31244244)

  • 21. Quantized vortex nucleation in collisions of superfluid nanoscopic helium droplets at zero temperature.
    García-Alfonso E; Ancilotto F; Barranco M; Pi M; Halberstadt N
    J Chem Phys; 2023 Aug; 159(7):. PubMed ID: 37602801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Singular jets during droplet impact on superhydrophobic surfaces.
    Peng X; Wang T; Jia F; Sun K; Li Z; Che Z
    J Colloid Interface Sci; 2023 Dec; 651():870-882. PubMed ID: 37573733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Numerical Investigation on the Collision Behavior of Polymer Droplets.
    Qian L; Cong H; Zhu C
    Polymers (Basel); 2020 Jan; 12(2):. PubMed ID: 31991675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact Dynamics of a Single Droplet on Hydrophobic Cylinders: A Lattice Boltzmann Study.
    Zhang LZ; Xu SY; Wang YF; Yang YR; Zheng SF; Gao SR; Wang XD; Lee DJ
    Langmuir; 2022 Oct; 38(39):11860-11872. PubMed ID: 36130147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Maximum Spreading and Rebound of a Droplet Impacting onto a Spherical Surface at Low Weber Numbers.
    Bordbar A; Taassob A; Khojasteh D; Marengo M; Kamali R
    Langmuir; 2018 May; 34(17):5149-5158. PubMed ID: 29633848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spreading, Breakup, and Rebound Behaviors of Compound Droplets Impacting on Microstructured Substrates.
    Farokhirad S; Solanky P; Shad MM
    Langmuir; 2023 Mar; 39(10):3645-3655. PubMed ID: 36853952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Colliding-Droplet Microreactor: Rapid On-Demand Inertial Mixing and Metal-Catalyzed Aqueous Phase Oxidation Processes.
    Davis RD; Jacobs MI; Houle FA; Wilson KR
    Anal Chem; 2017 Nov; 89(22):12494-12501. PubMed ID: 29083875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analytical consideration of liquid droplet impingement on solid surfaces.
    Yonemoto Y; Kunugi T
    Sci Rep; 2017 May; 7(1):2362. PubMed ID: 28539616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermally induced collision of droplets in an immiscible outer fluid.
    Davanlou A; Kumar R
    Sci Rep; 2015 May; 5():9531. PubMed ID: 25948547
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Weber number and the outcome of binary collisions between quantum droplets.
    Alba-Arroyo JE; Caballero-Benitez SF; Jáuregui R
    Sci Rep; 2022 Nov; 12(1):18467. PubMed ID: 36323755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oblique impingement of binary droplets at the nanoscale on superhydrophobic surfaces: A molecular dynamics study.
    Zhang A; Cui K; Tian Y; Zhang B; Wang T; He X
    J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns.
    Visser CW; Frommhold PE; Wildeman S; Mettin R; Lohse D; Sun C
    Soft Matter; 2015 Mar; 11(9):1708-22. PubMed ID: 25607820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rebounding suppression of droplet impact on hot surfaces: effect of surface temperature and concaveness.
    Jowkar S; Morad MR
    Soft Matter; 2019 Jan; 15(5):1017-1026. PubMed ID: 30657147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Jet or wet? Droplet post-impact regimes on concave contours.
    Agrawal S; Khurana G; Samanta D; Dhar P
    Eur Phys J E Soft Matter; 2023 Oct; 46(10):90. PubMed ID: 37782381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of a compound droplet on a flat surface: A model for single cell epitaxy.
    Tasoglu S; Kaynak G; Szeri AJ; Demirci U; Muradoglu M
    Phys Fluids (1994); 2010 Aug; 22(8):. PubMed ID: 20838481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preferred location of droplet collisions in turbulent flows.
    Perrin VE; Jonker HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033005. PubMed ID: 24730935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of contact angle hysteresis on droplet coalescence and mixing.
    Nilsson MA; Rothstein JP
    J Colloid Interface Sci; 2011 Nov; 363(2):646-54. PubMed ID: 21855081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deformation of Sessile Droplets under a Gentle Shear Airflow.
    Guo Y; Zhang X; Liu X; Wu X; Min J
    Langmuir; 2024 Sep; 40(36):19086-19095. PubMed ID: 39190451
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical study of droplet impact on a flexible substrate.
    Xiong Y; Huang H; Lu XY
    Phys Rev E; 2020 May; 101(5-1):053107. PubMed ID: 32575301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new scaling number reveals droplet dynamics on vibratory surfaces.
    Song M; Zhao H; Wang T; Wang S; Wan J; Qin X; Wang Z
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2414-2420. PubMed ID: 34753623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.