These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 31244254)

  • 1. CeO
    Song YY; Du LY; Wang WW; Jia CJ
    Langmuir; 2019 Jul; 35(26):8658-8666. PubMed ID: 31244254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study on CuO-CeO2 catalysts doped with alkali and alkaline earth metal oxides by in-situ DRIFTS].
    Zou HB; Chen SZ; Wang QY; Liu ZL; Lin WM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Mar; 30(3):672-6. PubMed ID: 20496684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pt-Embedded CuO
    Wu K; Fu XP; Yu WZ; Wang WW; Jia CJ; Du PP; Si R; Wang YH; Li LD; Zhou L; Sun LD; Yan CH
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34172-34183. PubMed ID: 30205674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermally stable core-shell Ni/nanorod-CeO
    Zhu S; Lian X; Fan T; Chen Z; Dong Y; Weng W; Yi X; Fang W
    Nanoscale; 2018 Jul; 10(29):14031-14038. PubMed ID: 29995024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of CeO
    Liu L; Shi J; Cao H; Wang R; Liu Z
    Beilstein J Nanotechnol; 2017; 8():2425-2437. PubMed ID: 29234577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile and Mild Strategy to Construct Mesoporous CeO2-CuO Nanorods with Enhanced Catalytic Activity toward CO Oxidation.
    Chen G; Xu Q; Yang Y; Li C; Huang T; Sun G; Zhang S; Ma D; Li X
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23538-44. PubMed ID: 26455260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Support structure and reduction treatment effects on CO oxidation of SiO
    Li J; Liu Z; Wang R
    J Colloid Interface Sci; 2018 Dec; 531():204-215. PubMed ID: 30032007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimum Preferential Oxidation Performance of CeO
    Ding J; Li L; Li H; Chen S; Fang S; Feng T; Li G
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7935-7945. PubMed ID: 29425017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sinter-Resistant and Highly Active Sub-5 nm Bimetallic Au-Cu Nanoparticle Catalysts Encapsulated in Silica for High-Temperature Carbon Monoxide Oxidation.
    Zanganeh N; Guda VK; Toghiani H; Keith JM
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4776-4785. PubMed ID: 29328617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic oxidation mechanism of AsH
    Li K; Feng J; Hao X; Song X; Zhang C; Ning P; Li K
    J Hazard Mater; 2023 Feb; 443(Pt B):130318. PubMed ID: 36444052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the Crystalline Properties of Hollow Ceria Nanostructures on a CuO-CeO
    Jang SJ; Lee H; Kim J; Kim NY; Choi DS; Joo JB
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of thermal stability of highly active species on SiO
    Aguila G; Calle R; Guerrero S; Baeza P; Araya P
    RSC Adv; 2021 Oct; 11(53):33271-33275. PubMed ID: 35497549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of hollow CuO@SiO2 spheres and its catalytic performances for the NO + CO and CO oxidation.
    Niu X; Zhao T; Yuan F; Zhu Y
    Sci Rep; 2015 Mar; 5():9153. PubMed ID: 25777579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-temperature catalytic reforming of n-hexane over supported and core-shell Pt nanoparticle catalysts: role of oxide-metal interface and thermal stability.
    An K; Zhang Q; Alayoglu S; Musselwhite N; Shin JY; Somorjai GA
    Nano Lett; 2014 Aug; 14(8):4907-12. PubMed ID: 25078630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Catalytic Performance of (CuO)
    Yang H; Pan Y; Xu Y; Yang Y; Sun G
    Chempluschem; 2015 May; 80(5):886-894. PubMed ID: 31973336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally stable Pd/CeO
    Tan L; Xiang G; Liu Z
    Nanoscale; 2024 Mar; 16(13):6720-6728. PubMed ID: 38494927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The remarkable enhancement of CO-pretreated CuO-Mn2O3/γ-Al2O3 supported catalyst for the reduction of NO with CO: the formation of surface synergetic oxygen vacancy.
    Li D; Yu Q; Li SS; Wan HQ; Liu LJ; Qi L; Liu B; Gao F; Dong L; Chen Y
    Chemistry; 2011 May; 17(20):5668-79. PubMed ID: 21688407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CuO decorated vacancy-rich CeO
    Wang F; Yu Z; Zhai S; Li Y; Xu Y; Ye Y; Wei X; Xu J; Xue B
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):31895-31904. PubMed ID: 36459322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergetic effect over flame-made manganese doped CuO-CeO
    Zhao F; Li S; Wu X; Yue R; Li W; Chen Y
    RSC Adv; 2019 Jan; 9(5):2343-2352. PubMed ID: 35520527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance ZnCo₂O₄@CeO2₂₄ core@shell microspheres for catalytic CO oxidation.
    Wang F; Wang X; Liu D; Zhen J; Li J; Wang Y; Zhang H
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22216-23. PubMed ID: 25415651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.