These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31244269)

  • 21. Investigating Interfacial Effects on Surface Nanobubbles without Pinning Using Molecular Dynamics Simulation.
    Chen YX; Chen YL; Yen TH
    Langmuir; 2018 Dec; 34(50):15360-15369. PubMed ID: 30480451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thickness, stability and contact angle of liquid films on and inside nanofibres, nanotubes and nanochannels.
    Mattia D; Starov V; Semenov S
    J Colloid Interface Sci; 2012 Oct; 384(1):149-56. PubMed ID: 22809548
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diffusion of water inside carbon nanotubes studied by pulsed field gradient NMR spectroscopy.
    Liu X; Pan X; Zhang S; Han X; Bao X
    Langmuir; 2014 Jul; 30(27):8036-45. PubMed ID: 24951088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ab initio molecular dynamics simulations of aqueous triflic acid confined in carbon nanotubes.
    Clark JK; Habenicht BF; Paddison SJ
    Phys Chem Chem Phys; 2014 Aug; 16(31):16465-79. PubMed ID: 24983213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water diffusion inside carbon nanotubes: mutual effects of surface and confinement.
    Zheng YG; Ye HF; Zhang ZQ; Zhang HW
    Phys Chem Chem Phys; 2012 Jan; 14(2):964-71. PubMed ID: 22120002
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sodium hexadecyl sulfate as an interfacial substance adjusting the adsorption of a protein on carbon nanotubes.
    Sun J; Du K; Fu L; Gao J; Zhang H; Feng W; Ji P
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15132-9. PubMed ID: 25126993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface-bubble-modulated liquid chromatography: a new approach for manipulation of chromatographic retention and investigation of solute distribution at water/hydrophobic interfaces.
    Nakamura K; Nakamura H; Saito S; Shibukawa M
    Anal Chem; 2015 Jan; 87(2):1180-7. PubMed ID: 25496068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. First-Principles Study of Water Nanotubes Captured Inside Carbon/Boron Nitride Nanotubes.
    Shayeganfar F; Beheshtian J; Shahsavari R
    Langmuir; 2018 Sep; 34(37):11176-11187. PubMed ID: 30139254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Progress on the Surface Nanobubble Story: What is in the bubble? Why does it exist?
    Peng H; Birkett GR; Nguyen AV
    Adv Colloid Interface Sci; 2015 Aug; 222():573-80. PubMed ID: 25267688
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen bond dynamics and microscopic structure of confined water inside carbon nanotubes.
    Hanasaki I; Nakatani A
    J Chem Phys; 2006 May; 124(17):174714. PubMed ID: 16689597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radiowave dielectric investigation of water confined in channels of carbon nanotubes.
    Cametti C; De Luca F; Parmentier A
    J Chem Phys; 2012 Sep; 137(9):094908. PubMed ID: 22957595
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrowetting of aligned carbon nanotube films.
    Zhu L; Xu J; Xiu Y; Sun Y; Hess DW; Wong CP
    J Phys Chem B; 2006 Aug; 110(32):15945-50. PubMed ID: 16898749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structures of water molecules in carbon nanotubes under electric fields.
    Winarto ; Takaiwa D; Yamamoto E; Yasuoka K
    J Chem Phys; 2015 Mar; 142(12):124701. PubMed ID: 25833597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amorphization and Directional Crystallization of Metals Confined in Carbon Nanotubes Investigated by in Situ Transmission Electron Microscopy.
    Tang DM; Ren CL; Lv R; Yu WJ; Hou PX; Wang MS; Wei X; Xu Z; Kawamoto N; Bando Y; Mitome M; Liu C; Cheng HM; Golberg D
    Nano Lett; 2015 Aug; 15(8):4922-7. PubMed ID: 26114583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydroxide ion can move faster than an excess proton through one-dimensional water chains in hydrophobic narrow pores.
    Bankura A; Chandra A
    J Phys Chem B; 2012 Aug; 116(32):9744-57. PubMed ID: 22793519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dynamics simulation study of the structural characteristics of water molecules confined in functionalized carbon nanotubes.
    Huang LL; Zhang LZ; Shao Q; Wang J; Lu LH; Lu XH; Jiang SY; Shen WF
    J Phys Chem B; 2006 Dec; 110(51):25761-8. PubMed ID: 17181218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pinning and gas oversaturation imply stable single surface nanobubbles.
    Lohse D; Zhang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):031003. PubMed ID: 25871042
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vibrational energy transfer between carbon nanotubes and liquid water: a molecular dynamics study.
    Nelson TR; Chaban VV; Kalugin ON; Prezhdo OV
    J Phys Chem B; 2010 Apr; 114(13):4609-14. PubMed ID: 20230009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Local microphase separation of a binary liquid under nanoscale confinement.
    Guo XY; Watermann T; Sebastiani D
    J Phys Chem B; 2014 Aug; 118(34):10207-13. PubMed ID: 25105217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption of anionic and non-ionic surfactants on carbon nanotubes in water with dissipative particle dynamics simulation.
    Vo MD; Shiau B; Harwell JH; Papavassiliou DV
    J Chem Phys; 2016 May; 144(20):204701. PubMed ID: 27250319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.