BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31244369)

  • 1. Comprehensive optimization of composite cryoprotectant for
    Guowei S; Yang X; Li C; Huang D; Lei Z; He C
    Prep Biochem Biotechnol; 2019; 49(9):846-857. PubMed ID: 31244369
    [No Abstract]   [Full Text] [Related]  

  • 2. Preparation of
    Shu G; Li B; Dai C; Chen L; Yang X; Lei Z; Zhang M; Guo Y
    Prep Biochem Biotechnol; 2022; 52(9):1078-1086. PubMed ID: 35108154
    [No Abstract]   [Full Text] [Related]  

  • 3. Optimization of composite cryoprotectant for freeze-drying Bifidobacterium bifidum BB01 by response surface methodology.
    Chen H; Tian M; Chen L; Cui X; Meng J; Shu G
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1559-1569. PubMed ID: 31007080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival and stability of Lactobacillus fermentum and Wickerhamomyces anomalus strains upon lyophilisation with different cryoprotectant agents.
    Stefanello RF; Nabeshima EH; Iamanaka BT; Ludwig A; Fries LLM; Bernardi AO; Copetti MV
    Food Res Int; 2019 Jan; 115():90-94. PubMed ID: 30599986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Storage stability and sourdough acidification kinetic of freeze-dried Lactobacillus curvatus N19 under optimized cryoprotectant formulation.
    Gul LB; Con AH; Gul O
    Cryobiology; 2020 Oct; 96():122-129. PubMed ID: 32712072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State transitions and physicochemical aspects of cryoprotection and stabilization in freeze-drying of Lactobacillus rhamnosus GG (LGG).
    Pehkonen KS; Roos YH; Miao S; Ross RP; Stanton C
    J Appl Microbiol; 2008 Jun; 104(6):1732-43. PubMed ID: 18248378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles.
    Fonte P; Soares S; Sousa F; Costa A; Seabra V; Reis S; Sarmento B
    Biomacromolecules; 2014 Oct; 15(10):3753-65. PubMed ID: 25180545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response surface optimization of lyoprotectant for Lactobacillus bulgaricus during vacuum freeze-drying.
    Chen H; Chen S; Li C; Shu G
    Prep Biochem Biotechnol; 2015; 45(5):463-75. PubMed ID: 24840953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of the different phases of the freeze-drying process of solid lipid nanoparticles using experimental designs.
    Elbrink K; Van Hees S; Holm R; Kiekens F
    Int J Pharm; 2023 Mar; 635():122717. PubMed ID: 36781084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trehalose is not a universal solution for solid lipid nanoparticles freeze-drying.
    Doktorovova S; Shegokar R; Fernandes L; Martins-Lopes P; Silva AM; Müller RH; Souto EB
    Pharm Dev Technol; 2014 Dec; 19(8):922-9. PubMed ID: 24099511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of a protective medium for enhancing the viability of freeze-dried Bacillus amyloliquefaciens B1408 based on response surface methodology.
    Han L; Pu T; Wang X; Liu B; Wang Y; Feng J; Zhang X
    Cryobiology; 2018 Apr; 81():101-106. PubMed ID: 29458043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of fermentation time, cryoprotectant and neutralization of cell concentrate on freeze-drying survival, storage stability, and acid and bile exposure of Bifidobacterium animalis ssp. lactis cells produced without milk-based ingredients.
    Saarela M; Virkajärvi I; Alakomi HL; Mattila-Sandholm T; Vaari A; Suomalainen T; Mättö J
    J Appl Microbiol; 2005; 99(6):1330-9. PubMed ID: 16313405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of viability of a probiotic Lactobacillus strain for poultry during freeze-drying and storage using the response surface methodology.
    Khoramnia A; Abdullah N; Liew SL; Sieo CC; Ramasamy K; Ho YW
    Anim Sci J; 2011 Feb; 82(1):127-35. PubMed ID: 21269371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimisation of initial cell concentration enhances freeze-drying tolerance of Pseudomonas chlororaphis.
    Palmfeldt J; Rådström P; Hahn-Hägerdal B
    Cryobiology; 2003 Aug; 47(1):21-9. PubMed ID: 12963409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors influencing the stability of freeze-dried stress-resilient and stress-sensitive strains of bifidobacteria.
    Celik OF; O'Sullivan DJ
    J Dairy Sci; 2013 Jun; 96(6):3506-16. PubMed ID: 23587387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimising the viability during storage of freeze-dried cell preparations of Campylobacter jejuni.
    Portner DC; Leuschner RG; Murray BS
    Cryobiology; 2007 Jun; 54(3):265-70. PubMed ID: 17482158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polysaccharides can improve the survival of Lactiplantibacillus plantarum subjected to freeze-drying.
    Wang G; Luo L; Dong C; Zheng X; Guo B; Xia Y; Tao L; Ai L
    J Dairy Sci; 2021 Mar; 104(3):2606-2614. PubMed ID: 33309373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles.
    Soares S; Fonte P; Costa A; Andrade J; Seabra V; Ferreira D; Reis S; Sarmento B
    Int J Pharm; 2013 Nov; 456(2):370-81. PubMed ID: 24036086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity.
    Zhang M; Oldenhof H; Sydykov B; Bigalk J; Sieme H; Wolkers WF
    Sci Rep; 2017 Jul; 7(1):6198. PubMed ID: 28740099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved stability of live attenuated vaccine gdhA derivative Pasteurella multocida B:2 by freeze drying method for use as animal vaccine.
    Oslan SNH; Halim M; Ramle NA; Saad MZ; Tan JS; Kapri MR; Ariff AB
    Cryobiology; 2017 Dec; 79():1-8. PubMed ID: 29037980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.