These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

688 related articles for article (PubMed ID: 31244410)

  • 21. Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite.
    Vieceli N; Nogueira CA; GuimarĂ£es C; Pereira MFC; DurĂ£o FO; Margarido F
    Waste Manag; 2018 Jan; 71():350-361. PubMed ID: 29030120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reaction mechanism of antibiotic bacteria residues as a green reductant for highly efficient recycling of spent lithium-ion batteries.
    Ma Y; Zhou X; Tang J; Liu X; Gan H; Yang J
    J Hazard Mater; 2021 Sep; 417():126032. PubMed ID: 33992020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recovery of valuable metals from spent lithium-ion batteries using microbial agents for bioleaching: a review.
    Biswal BK; Balasubramanian R
    Front Microbiol; 2023; 14():1197081. PubMed ID: 37323903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recycling of valuable metals from spent lithium-ion batteries by self-supplied reductant roasting.
    Wei N; He Y; Zhang G; Feng Y; Li J; Lu Q; Fu Y
    J Environ Manage; 2023 Mar; 329():117107. PubMed ID: 36566732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leaching process for recovering valuable metals from the LiNi
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2017 Jun; 64():171-181. PubMed ID: 28325707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries.
    Moazzam P; Boroumand Y; Rabiei P; Baghbaderani SS; Mokarian P; Mohagheghian F; Mohammed LJ; Razmjou A
    Chemosphere; 2021 Aug; 277():130196. PubMed ID: 33784558
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries.
    Li J; Wang G; Xu Z
    Waste Manag; 2016 Jun; 52():221-7. PubMed ID: 27021697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries.
    Chen X; Guo C; Ma H; Li J; Zhou T; Cao L; Kang D
    Waste Manag; 2018 May; 75():459-468. PubMed ID: 29366798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger.
    Bahaloo-Horeh N; Mousavi SM
    Waste Manag; 2017 Feb; 60():666-679. PubMed ID: 27825532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process.
    Wang MM; Zhang CC; Zhang FS
    Waste Manag; 2017 Sep; 67():232-239. PubMed ID: 28502601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.
    Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z
    Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges.
    Noudeng V; Quan NV; Xuan TD
    Int J Environ Res Public Health; 2022 Dec; 19(23):. PubMed ID: 36498242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Management status of waste lithium-ion batteries in China and a complete closed-circuit recycling process.
    Sun S; Jin C; He W; Li G; Zhu H; Huang J
    Sci Total Environ; 2021 Jul; 776():145913. PubMed ID: 33639457
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate.
    Wang C; Wang S; Yan F; Zhang Z; Shen X; Zhang Z
    Waste Manag; 2020 Aug; 114():253-262. PubMed ID: 32682090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-step selective separation and efficient recovery of valuable metals from mixed spent lithium batteries in the phosphoric acid system.
    Zhou X; Yang W; Liu X; Tang J; Su F; Li Z; Yang J; Ma Y
    Waste Manag; 2023 Jan; 155():53-64. PubMed ID: 36343600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries.
    Lie J; Tanda S; Liu JC
    Molecules; 2020 May; 25(9):. PubMed ID: 32384592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extraction of precious metals from used lithium-ion batteries by a natural deep eutectic solvent with synergistic effects.
    Luo Y; Ou L; Yin C
    Waste Manag; 2023 Jun; 164():1-8. PubMed ID: 37023641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A sustainable approach for selective recovery of lithium from cathode materials of spent lithium-ion batteries by induced phase transition.
    Rao F; Sun Z; Lv W; Zhang X; Guan J; Zheng X
    Waste Manag; 2023 Feb; 156():247-254. PubMed ID: 36502638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel electrochemically driven and internal circulation process for valuable metals recycling from spent lithium-ion batteries.
    Li S; Wu X; Jiang Y; Zhou T; Zhao Y; Chen X
    Waste Manag; 2021 Dec; 136():18-27. PubMed ID: 34634567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.