BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31244670)

  • 1. Optogenetic Termination of Cardiac Arrhythmia: Mechanistic Enlightenment and Therapeutic Application?
    Sasse P; Funken M; Beiert T; Bruegmann T
    Front Physiol; 2019; 10():675. PubMed ID: 31244670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opsin spectral sensitivity determines the effectiveness of optogenetic termination of ventricular fibrillation in the human heart: a simulation study.
    Karathanos TV; Bayer JD; Wang D; Boyle PM; Trayanova NA
    J Physiol; 2016 Dec; 594(23):6879-6891. PubMed ID: 26941055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac Optogenetics: 2018.
    Boyle PM; Karathanos TV; Trayanova NA
    JACC Clin Electrophysiol; 2018 Feb; 4(2):155-167. PubMed ID: 29749932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of Using Adjunctive Optogenetic Technologies in Cardiomyocyte Phenotyping - from the Single Cell to the Whole Heart.
    Bub G; Daniels MJ
    Curr Pharm Biotechnol; 2020; 21(9):752-764. PubMed ID: 30961485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient termination of cardiac arrhythmias using optogenetic resonant feedback pacing.
    Hussaini S; Mamyraiym Kyzy A; Schröder-Schetelig J; Lädke SL; Venkatesan V; Diaz-Maue L; Quiñonez Uribe RA; Richter C; Biktashev VN; Majumder R; Krinski V; Luther S
    Chaos; 2024 Mar; 34(3):. PubMed ID: 38526981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-optical control of cardiac excitation: combined high-resolution optogenetic actuation and optical mapping.
    Entcheva E; Bub G
    J Physiol; 2016 May; 594(9):2503-10. PubMed ID: 26857427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-based Approaches to Cardiac Arrhythmia Research: From Basic Science to Translational Applications.
    Karathanos TV; Boyle PM; Trayanova NA
    Clin Med Insights Cardiol; 2016; 10(Suppl 1):47-60. PubMed ID: 27840581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Integrated Optogenetic and Bioelectronic Platform for Regulating Cardiomyocyte Function.
    Bolonduro OA; Chen Z; Lai YR; Cote M; Rao AA; Liu H; Tzanakakis ES; Timko BP
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction to "Lustro: High-Throughput Optogenetic Experiments Enabled by Automation and a Yeast Optogenetic Toolkit".
    Harmer ZP; McClean MN
    ACS Synth Biol; 2023 Nov; 12(11):3505. PubMed ID: 37906946
    [No Abstract]   [Full Text] [Related]  

  • 10. Optogenetic control of β cell function.
    Jimenez-Gonzalez M; Stanley S
    Nat Biomed Eng; 2023 Dec; ():. PubMed ID: 38057429
    [No Abstract]   [Full Text] [Related]  

  • 11. Cardiac Optogenetics in Atrial Fibrillation: Current Challenges and Future Opportunities.
    Floria M; Radu S; Gosav EM; Moraru AC; Serban T; Carauleanu A; Costea CF; Ouatu A; Ciocoiu M; Tanase DM
    Biomed Res Int; 2020; 2020():8814092. PubMed ID: 33195698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac optogenetics: shining light on signaling pathways.
    Leemann S; Schneider-Warme F; Kleinlogel S
    Pflugers Arch; 2023 Dec; 475(12):1421-1437. PubMed ID: 38097805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolution of spiral wave's core using cardiac optogenetics.
    Hussaini S; Lädke SL; Schröder-Schetelig J; Venkatesan V; Quiñonez Uribe RA; Richter C; Majumder R; Luther S
    PLoS Comput Biol; 2023 Dec; 19(12):e1011660. PubMed ID: 38060618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetics Sheds Light on Brown and Beige Adipocytes.
    Brown AC
    J Cell Signal; 2023; 4(4):178-186. PubMed ID: 37946877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-triggered cardiac microphysiological model.
    Vurro V; Shani K; Ardoña HAM; Zimmerman JF; Sesti V; Lee KY; Jin Q; Bertarelli C; Parker KK; Lanzani G
    APL Bioeng; 2023 Jun; 7(2):026108. PubMed ID: 37234844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical modulation of excitation-contraction coupling in human-induced pluripotent stem cell-derived cardiomyocytes.
    Vurro V; Federici B; Ronchi C; Florindi C; Sesti V; Crasto S; Maniezzi C; Galli C; Antognazza MR; Bertarelli C; Di Pasquale E; Lanzani G; Lodola F
    iScience; 2023 Mar; 26(3):106121. PubMed ID: 36879812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic manipulation of cardiac electrical dynamics using sub-threshold illumination: dissecting the role of cardiac alternans in terminating rapid rhythms.
    Biasci V; Santini L; Marchal GA; Hussaini S; Ferrantini C; Coppini R; Loew LM; Luther S; Campione M; Poggesi C; Pavone FS; Cerbai E; Bub G; Sacconi L
    Basic Res Cardiol; 2022 Apr; 117(1):25. PubMed ID: 35488105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic Control of Human Induced Pluripotent Stem Cell-Derived Cardiac Tissue Models.
    Gruber A; Edri O; Glatstein S; Goldfracht I; Huber I; Arbel G; Gepstein A; Chorna S; Gepstein L
    J Am Heart Assoc; 2022 Feb; 11(4):e021615. PubMed ID: 35112880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterned Illumination Techniques in Optogenetics: An Insight Into Decelerating Murine Hearts.
    Diaz-Maue L; Steinebach J; Richter C
    Front Physiol; 2021; 12():750535. PubMed ID: 35087413
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.