BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1108 related articles for article (PubMed ID: 31244820)

  • 1. Targeting Adenosine in Cancer Immunotherapy to Enhance T-Cell Function.
    Vigano S; Alatzoglou D; Irving M; Ménétrier-Caux C; Caux C; Romero P; Coukos G
    Front Immunol; 2019; 10():925. PubMed ID: 31244820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting Hypoxia-A2A Adenosinergic Immunosuppression of Antitumor T Cells During Cancer Immunotherapy.
    Steingold JM; Hatfield SM
    Front Immunol; 2020; 11():570041. PubMed ID: 33117358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting adenosine for cancer immunotherapy.
    Leone RD; Emens LA
    J Immunother Cancer; 2018 Jun; 6(1):57. PubMed ID: 29914571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy.
    Sek K; Mølck C; Stewart GD; Kats L; Darcy PK; Beavis PA
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30513816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenosinergic signaling as a target for natural killer cell immunotherapy.
    Wang J; Matosevic S
    J Mol Med (Berl); 2018 Sep; 96(9):903-913. PubMed ID: 30069747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversing T-cell Dysfunction and Exhaustion in Cancer.
    Zarour HM
    Clin Cancer Res; 2016 Apr; 22(8):1856-64. PubMed ID: 27084739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MDM2 inhibitor APG-115 synergizes with PD-1 blockade through enhancing antitumor immunity in the tumor microenvironment.
    Fang DD; Tang Q; Kong Y; Wang Q; Gu J; Fang X; Zou P; Rong T; Wang J; Yang D; Zhai Y
    J Immunother Cancer; 2019 Nov; 7(1):327. PubMed ID: 31779710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting Tumor Vasculature with TNF Leads Effector T Cells to the Tumor and Enhances Therapeutic Efficacy of Immune Checkpoint Blockers in Combination with Adoptive Cell Therapy.
    Elia AR; Grioni M; Basso V; Curnis F; Freschi M; Corti A; Mondino A; Bellone M
    Clin Cancer Res; 2018 May; 24(9):2171-2181. PubMed ID: 29490991
    [No Abstract]   [Full Text] [Related]  

  • 9. Metabolic Checkpoints: Novel Avenues for Immunotherapy of Cancer.
    Shevchenko I; Bazhin AV
    Front Immunol; 2018; 9():1816. PubMed ID: 30131808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells (Review).
    Hoskin DW; Mader JS; Furlong SJ; Conrad DM; Blay J
    Int J Oncol; 2008 Mar; 32(3):527-35. PubMed ID: 18292929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re-education of the Tumor Microenvironment With Targeted Therapies and Immunotherapies.
    Ngiow SF; Young A
    Front Immunol; 2020; 11():1633. PubMed ID: 32849557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosinergic axis and immune checkpoint combination therapy in tumor: A new perspective for immunotherapy strategy.
    Liu Z; Liu X; Shen H; Xu X; Zhao X; Fu R
    Front Immunol; 2022; 13():978377. PubMed ID: 36159861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the adenosine signaling pathway in macrophages for cancer immunotherapy.
    Yang H; Zhang Z; Zhao K; Zhang Y; Yin X; Zhu G; Wang Z; Yan X; Li X; He T; Wang K
    Hum Immunol; 2024 May; 85(3):110774. PubMed ID: 38521664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies.
    Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH
    Front Immunol; 2020; 11():784. PubMed ID: 32457745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antitumor Antibodies Can Drive Therapeutic T Cell Responses.
    Wittrup KD
    Trends Cancer; 2017 Sep; 3(9):615-620. PubMed ID: 28867165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8
    Mastelic-Gavillet B; Navarro Rodrigo B; Décombaz L; Wang H; Ercolano G; Ahmed R; Lozano LE; Ianaro A; Derré L; Valerio M; Tawadros T; Jichlinski P; Nguyen-Ngoc T; Speiser DE; Verdeil G; Gestermann N; Dormond O; Kandalaft L; Coukos G; Jandus C; Ménétrier-Caux C; Caux C; Ho PC; Romero P; Harari A; Vigano S
    J Immunother Cancer; 2019 Oct; 7(1):257. PubMed ID: 31601268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overcoming Resistance to Combination Radiation-Immunotherapy: A Focus on Contributing Pathways Within the Tumor Microenvironment.
    Darragh LB; Oweida AJ; Karam SD
    Front Immunol; 2018; 9():3154. PubMed ID: 30766539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of cell surface proteoglycans in cancer immunotherapy.
    Espinoza-Sánchez NA; Götte M
    Semin Cancer Biol; 2020 May; 62():48-67. PubMed ID: 31336150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity.
    Lee WS; Yang H; Chon HJ; Kim C
    Exp Mol Med; 2020 Sep; 52(9):1475-1485. PubMed ID: 32913278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of the Adenosinergic Pathway in Cancer Rejuvenates Innate and Adaptive Immunity.
    Azambuja JH; Ludwig N; Braganhol E; Whiteside TL
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31739402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.