These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1134 related articles for article (PubMed ID: 31244820)
1. Targeting Adenosine in Cancer Immunotherapy to Enhance T-Cell Function. Vigano S; Alatzoglou D; Irving M; Ménétrier-Caux C; Caux C; Romero P; Coukos G Front Immunol; 2019; 10():925. PubMed ID: 31244820 [TBL] [Abstract][Full Text] [Related]
2. Targeting Hypoxia-A2A Adenosinergic Immunosuppression of Antitumor T Cells During Cancer Immunotherapy. Steingold JM; Hatfield SM Front Immunol; 2020; 11():570041. PubMed ID: 33117358 [TBL] [Abstract][Full Text] [Related]
3. Targeting adenosine for cancer immunotherapy. Leone RD; Emens LA J Immunother Cancer; 2018 Jun; 6(1):57. PubMed ID: 29914571 [TBL] [Abstract][Full Text] [Related]
4. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Sek K; Mølck C; Stewart GD; Kats L; Darcy PK; Beavis PA Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30513816 [TBL] [Abstract][Full Text] [Related]
5. Adenosinergic signaling as a target for natural killer cell immunotherapy. Wang J; Matosevic S J Mol Med (Berl); 2018 Sep; 96(9):903-913. PubMed ID: 30069747 [TBL] [Abstract][Full Text] [Related]
6. Reversing T-cell Dysfunction and Exhaustion in Cancer. Zarour HM Clin Cancer Res; 2016 Apr; 22(8):1856-64. PubMed ID: 27084739 [TBL] [Abstract][Full Text] [Related]
7. Targeting Tumor Vasculature with TNF Leads Effector T Cells to the Tumor and Enhances Therapeutic Efficacy of Immune Checkpoint Blockers in Combination with Adoptive Cell Therapy. Elia AR; Grioni M; Basso V; Curnis F; Freschi M; Corti A; Mondino A; Bellone M Clin Cancer Res; 2018 May; 24(9):2171-2181. PubMed ID: 29490991 [No Abstract] [Full Text] [Related]
8. Metabolic Checkpoints: Novel Avenues for Immunotherapy of Cancer. Shevchenko I; Bazhin AV Front Immunol; 2018; 9():1816. PubMed ID: 30131808 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells (Review). Hoskin DW; Mader JS; Furlong SJ; Conrad DM; Blay J Int J Oncol; 2008 Mar; 32(3):527-35. PubMed ID: 18292929 [TBL] [Abstract][Full Text] [Related]
10. Re-education of the Tumor Microenvironment With Targeted Therapies and Immunotherapies. Ngiow SF; Young A Front Immunol; 2020; 11():1633. PubMed ID: 32849557 [TBL] [Abstract][Full Text] [Related]
11. Adenosinergic axis and immune checkpoint combination therapy in tumor: A new perspective for immunotherapy strategy. Liu Z; Liu X; Shen H; Xu X; Zhao X; Fu R Front Immunol; 2022; 13():978377. PubMed ID: 36159861 [TBL] [Abstract][Full Text] [Related]
12. Targeting the adenosine signaling pathway in macrophages for cancer immunotherapy. Yang H; Zhang Z; Zhao K; Zhang Y; Yin X; Zhu G; Wang Z; Yan X; Li X; He T; Wang K Hum Immunol; 2024 May; 85(3):110774. PubMed ID: 38521664 [TBL] [Abstract][Full Text] [Related]
13. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies. Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH Front Immunol; 2020; 11():784. PubMed ID: 32457745 [TBL] [Abstract][Full Text] [Related]
15. Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8 Mastelic-Gavillet B; Navarro Rodrigo B; Décombaz L; Wang H; Ercolano G; Ahmed R; Lozano LE; Ianaro A; Derré L; Valerio M; Tawadros T; Jichlinski P; Nguyen-Ngoc T; Speiser DE; Verdeil G; Gestermann N; Dormond O; Kandalaft L; Coukos G; Jandus C; Ménétrier-Caux C; Caux C; Ho PC; Romero P; Harari A; Vigano S J Immunother Cancer; 2019 Oct; 7(1):257. PubMed ID: 31601268 [TBL] [Abstract][Full Text] [Related]
16. Role of cell surface proteoglycans in cancer immunotherapy. Espinoza-Sánchez NA; Götte M Semin Cancer Biol; 2020 May; 62():48-67. PubMed ID: 31336150 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of the Adenosinergic Pathway in Cancer Rejuvenates Innate and Adaptive Immunity. Azambuja JH; Ludwig N; Braganhol E; Whiteside TL Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31739402 [TBL] [Abstract][Full Text] [Related]
18. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies. Kato D; Yaguchi T; Iwata T; Morii K; Nakagawa T; Nishimura R; Kawakami Y Nihon Rinsho Meneki Gakkai Kaishi; 2017; 40(1):68-77. PubMed ID: 28539557 [TBL] [Abstract][Full Text] [Related]
19. Targeting CD73 with AB680 (Quemliclustat), a Novel and Potent Small-Molecule CD73 Inhibitor, Restores Immune Functionality and Facilitates Antitumor Immunity. Piovesan D; Tan JBL; Becker A; Banuelos J; Narasappa N; DiRenzo D; Zhang K; Chen A; Ginn E; Udyavar AR; Yin F; Paprcka SL; Purandare B; Park TW; Kimura N; Kalisiak J; Young SW; Powers JP; Schindler U; Sivick KE; Walters MJ Mol Cancer Ther; 2022 Jun; 21(6):948-959. PubMed ID: 35405741 [TBL] [Abstract][Full Text] [Related]
20. Inhibitors of the CD73-adenosinergic checkpoint as promising combinatory agents for conventional and advanced cancer immunotherapy. Kurago Z; Guo G; Shi H; Bollag RJ; Groves MW; Byrd JK; Cui Y Front Immunol; 2023; 14():1212209. PubMed ID: 37435071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]