These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1134 related articles for article (PubMed ID: 31244820)

  • 21. Targeting the CD73-adenosine axis in immuno-oncology.
    Allard D; Chrobak P; Allard B; Messaoudi N; Stagg J
    Immunol Lett; 2019 Jan; 205():31-39. PubMed ID: 29758241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Further Advances in Cancer Immunotherapy: Going Beyond Checkpoint Blockade.
    Wilkinson RW; Leishman AJ
    Front Immunol; 2018; 9():1082. PubMed ID: 29910800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hijacked Immune Cells in the Tumor Microenvironment: Molecular Mechanisms of Immunosuppression and Cues to Improve T Cell-Based Immunotherapy of Solid Tumors.
    Balta E; Wabnitz GH; Samstag Y
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CD73 as a potential opportunity for cancer immunotherapy.
    Ghalamfarsa G; Kazemi MH; Raoofi Mohseni S; Masjedi A; Hojjat-Farsangi M; Azizi G; Yousefi M; Jadidi-Niaragh F
    Expert Opin Ther Targets; 2019 Feb; 23(2):127-142. PubMed ID: 30556751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting the Immunomodulatory CD73/Adenosine System to Improve the Therapeutic Gain of Radiotherapy.
    de Leve S; Wirsdörfer F; Jendrossek V
    Front Immunol; 2019; 10():698. PubMed ID: 31024543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity.
    Lee WS; Yang H; Chon HJ; Kim C
    Exp Mol Med; 2020 Sep; 52(9):1475-1485. PubMed ID: 32913278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tumor matrix remodeling and novel immunotherapies: the promise of matrix-derived immune biomarkers.
    Mushtaq MU; Papadas A; Pagenkopf A; Flietner E; Morrow Z; Chaudhary SG; Asimakopoulos F
    J Immunother Cancer; 2018 Jul; 6(1):65. PubMed ID: 29970158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment.
    Looi CK; Chung FF; Leong CO; Wong SF; Rosli R; Mai CW
    J Exp Clin Cancer Res; 2019 Apr; 38(1):162. PubMed ID: 30987642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy.
    Dai E; Zhu Z; Wahed S; Qu Z; Storkus WJ; Guo ZS
    Mol Cancer; 2021 Dec; 20(1):171. PubMed ID: 34930302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CD39/CD73/A2AR pathway and cancer immunotherapy.
    Xia C; Yin S; To KKW; Fu L
    Mol Cancer; 2023 Mar; 22(1):44. PubMed ID: 36859386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Current Adenosinergic Therapies: What Do Cancer Cells Stand to Gain and Lose?
    Kotulová J; Hajdúch M; Džubák P
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy.
    Phuengkham H; Ren L; Shin IW; Lim YT
    Adv Mater; 2019 Aug; 31(34):e1803322. PubMed ID: 30773696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G.
    Carosella ED; Ploussard G; LeMaoult J; Desgrandchamps F
    Eur Urol; 2015 Aug; 68(2):267-79. PubMed ID: 25824720
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adenosine signaling: Next checkpoint for gastric cancer immunotherapy?
    Shi L; Yang L; Wu Z; Xu W; Song J; Guan W
    Int Immunopharmacol; 2018 Oct; 63():58-65. PubMed ID: 30075429
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The MEK inhibitor selumetinib complements CTLA-4 blockade by reprogramming the tumor immune microenvironment.
    Poon E; Mullins S; Watkins A; Williams GS; Koopmann JO; Di Genova G; Cumberbatch M; Veldman-Jones M; Grosskurth SE; Sah V; Schuller A; Reimer C; Dovedi SJ; Smith PD; Stewart R; Wilkinson RW
    J Immunother Cancer; 2017 Aug; 5(1):63. PubMed ID: 28807001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting T cell metabolism in the tumor microenvironment: an anti-cancer therapeutic strategy.
    Yin Z; Bai L; Li W; Zeng T; Tian H; Cui J
    J Exp Clin Cancer Res; 2019 Sep; 38(1):403. PubMed ID: 31519198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. T-cell programming in pancreatic adenocarcinoma: a review.
    Seo YD; Pillarisetty VG
    Cancer Gene Ther; 2017 Mar; 24(3):106-113. PubMed ID: 27910859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tumor microenvironment dictates regulatory T cell phenotype: Upregulated immune checkpoints reinforce suppressive function.
    Kim HR; Park HJ; Son J; Lee JG; Chung KY; Cho NH; Shim HS; Park S; Kim G; In Yoon H; Kim HG; Jung YW; Cho BC; Park SY; Rha SY; Ha SJ
    J Immunother Cancer; 2019 Dec; 7(1):339. PubMed ID: 31801611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immunotherapy: Beyond Anti-PD-1 and Anti-PD-L1 Therapies.
    Antonia SJ; Vansteenkiste JF; Moon E
    Am Soc Clin Oncol Educ Book; 2016; 35():e450-8. PubMed ID: 27249753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adenosine in cancer immunotherapy: Taking off on a new plane.
    Zhang C; Wang K; Wang H
    Biochim Biophys Acta Rev Cancer; 2023 Nov; 1878(6):189005. PubMed ID: 37913941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 57.