These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31245354)

  • 21. Aqueous Binder Enhanced High-Performance GeP
    He J; Wei Y; Hu L; Li H; Zhai T
    Front Chem; 2018; 6():21. PubMed ID: 29484292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oriented-Redox Induced Uniform MnO
    Jiang M; Fan X; Wang Z; Yang Z; Huang C; Zhang W
    Langmuir; 2020 Nov; 36(45):13555-13562. PubMed ID: 33140641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ZnO decorated germanium nanoparticles as anode materials in Li-ion batteries.
    Kim TH; Park SY; Lee TH; Jeong J; Kim DS; Swihart MT; Song HK; Kim JY; Kim S
    Nanotechnology; 2017 Mar; 28(9):095402. PubMed ID: 28067209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel self-supported porous ZnO nanobelt arrays on Zn foils: excellent binder-free anode materials for LIBs.
    An J; Qin W; Wen X
    Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 34098540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ synthesis of C/Cu/ZnO porous hybrids as anode materials for lithium ion batteries.
    Wang Y; Jiang X; Yang L; Jia N; Ding Y
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1525-32. PubMed ID: 24417493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical Film Formation on Magnesium Metal in an Ionic Liquid That Dissolves Metal Triflate and Its Application to an Active Material with Anion Charge Carrier.
    Shiga T; Kato Y; Inoue M
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30933-30940. PubMed ID: 27788325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanorod and nanoparticle shells in concentration gradient core-shell lithium oxides for rechargeable lithium batteries.
    Yoon SJ; Myung ST; Noh HJ; Lu J; Amine K; Sun YK
    ChemSusChem; 2014 Dec; 7(12):3295-303. PubMed ID: 25044175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 3D MoO
    Herdt T; Bruns M; Schneider JJ
    Dalton Trans; 2018 Oct; 47(42):14897-14907. PubMed ID: 30019045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomic layer deposition of ZnO on carbon black as nanostructured anode materials for high-performance lithium-ion batteries.
    Lu S; Wang H; Zhou J; Wu X; Qin W
    Nanoscale; 2017 Jan; 9(3):1184-1192. PubMed ID: 28009909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Co-Existence of Iron Oxide Nanoparticles and Manganese Oxide Nanorods as Decoration of Hollow Carbon Spheres for Boosting Electrochemical Performance of Li-Ion Battery.
    Wenelska K; Trukawka M; Kukulka W; Chen X; Mijowska E
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxide nanostructures hyperbranched with thin and hollow metal shells for high-performance nanostructured battery electrodes.
    Xia X; Xiong Q; Zhang Y; Tu J; Ng CF; Fan HJ
    Small; 2014 Jun; 10(12):2419-28. PubMed ID: 24610815
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries.
    Qiu L; Shao Z; Wang D; Wang F; Wang W; Wang J
    Carbohydr Polym; 2014 Nov; 112():532-8. PubMed ID: 25129778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode.
    Zhang G; Hou S; Zhang H; Zeng W; Yan F; Li CC; Duan H
    Adv Mater; 2015 Apr; 27(14):2400-5. PubMed ID: 25728828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MOF-derived cobalt-doped ZnO@C composites as a high-performance anode material for lithium-ion batteries.
    Yue H; Shi Z; Wang Q; Cao Z; Dong H; Qiao Y; Yin Y; Yang S
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17067-74. PubMed ID: 25222492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres as an efficient anode material for Li-ion batteries.
    Geng H; Zhou Q; Pan Y; Gu H; Zheng J
    Nanoscale; 2014 Apr; 6(7):3889-94. PubMed ID: 24598908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition.
    Yu M; Wang A; Wang Y; Li C; Shi G
    Nanoscale; 2014 Oct; 6(19):11419-24. PubMed ID: 25148141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and reaction mechanism of binary Ni-Al oxides as materials for lithium-ion battery anodes.
    Sonoyama N; Niki K; Koide A; Eguchi M; Ogasawara Y; Tsukada T; Dedetemo PK
    Dalton Trans; 2021 Oct; 50(40):14176-14186. PubMed ID: 34549737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mastering the interface for advanced all-solid-state lithium rechargeable batteries.
    Li Y; Zhou W; Chen X; Lü X; Cui Z; Xin S; Xue L; Jia Q; Goodenough JB
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):13313-13317. PubMed ID: 27821751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Situ Formed LiZn Alloy Skeleton for Stable Lithium Anodes.
    Ouyang Y; Cui C; Guo Y; Wei Y; Zhai T; Li H
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25818-25825. PubMed ID: 32396325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.