These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31245536)

  • 1. Molecular insights into the surface-catalyzed secondary nucleation of amyloid-β
    Bunce SJ; Wang Y; Stewart KL; Ashcroft AE; Radford SE; Hall CK; Wilson AJ
    Sci Adv; 2019 Jun; 5(6):eaav8216. PubMed ID: 31245536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic Strength Modulation of the Free Energy Landscape of Aβ40 Peptide Fibril Formation.
    Abelein A; Jarvet J; Barth A; Gräslund A; Danielsson J
    J Am Chem Soc; 2016 Jun; 138(21):6893-902. PubMed ID: 27171340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding Amyloid-β Oligomerization at the Molecular Level: The Role of the Fibril Surface.
    Barz B; Strodel B
    Chemistry; 2016 Jun; 22(26):8768-72. PubMed ID: 27135646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Study on the Inhibition Mechanisms of Drugs CQ1-3 for Alzheimer Amyloid-β40 Aggregation Induced by Cu(2.).
    Dong M; Li H; Hu D; Zhao W; Zhu X; Ai H
    ACS Chem Neurosci; 2016 May; 7(5):599-614. PubMed ID: 26871000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of secondary nucleation along the fibril surface of the amyloid
    Thacker D; Barghouth M; Bless M; Zhang E; Linse S
    Proc Natl Acad Sci U S A; 2023 Jun; 120(25):e2220664120. PubMed ID: 37307445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Characteristics of Monomeric Aβ42 on Fibril in the Early Stage of Secondary Nucleation Process.
    Noda K; Tachi Y; Okamoto Y
    ACS Chem Neurosci; 2020 Oct; 11(19):2989-2998. PubMed ID: 32794732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides.
    Meisl G; Yang X; Hellstrand E; Frohm B; Kirkegaard JB; Cohen SI; Dobson CM; Linse S; Knowles TP
    Proc Natl Acad Sci U S A; 2014 Jul; 111(26):9384-9. PubMed ID: 24938782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of beta-amyloid(40) fibrillogenesis and disassembly of beta-amyloid(40) fibrils by short beta-amyloid congeners containing N-methyl amino acids at alternate residues.
    Gordon DJ; Sciarretta KL; Meredith SC
    Biochemistry; 2001 Jul; 40(28):8237-45. PubMed ID: 11444969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc Induced Aβ
    Tolstova AP; Makarov AA; Adzhubei AA
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the region 23-28 in Abeta fibril formation: insights from simulations of the monomers and dimers of Alzheimer's peptides Abeta40 and Abeta42.
    Melquiond A; Dong X; Mousseau N; Derreumaux P
    Curr Alzheimer Res; 2008 Jun; 5(3):244-50. PubMed ID: 18537541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc as chaperone-mimicking agent for retardation of amyloid β peptide fibril formation.
    Abelein A; Gräslund A; Danielsson J
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5407-12. PubMed ID: 25825723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling of Zinc-Binding and Secondary Structure in Nonfibrillar Aβ40 Peptide Oligomerization.
    Xu L; Shan S; Chen Y; Wang X; Nussinov R; Ma B
    J Chem Inf Model; 2015 Jun; 55(6):1218-30. PubMed ID: 26017140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of the Formation of Tau and Aβ Peptide Mixed Aggregates on the Secondary Structure of the N-Terminal Region of Aβ.
    Rojas AV; Maisuradze GG; Scheraga HA
    J Phys Chem B; 2018 Jul; 122(28):7049-7056. PubMed ID: 29940109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of amyloid-β fibril elongation.
    Gurry T; Stultz CM
    Biochemistry; 2014 Nov; 53(44):6981-91. PubMed ID: 25330398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into the co-aggregation of Aβ and tau amyloid core peptides: Revealing potential pathological heterooligomers by simulations.
    Li X; Chen Y; Yang Z; Zhang S; Wei G; Zhang L
    Int J Biol Macromol; 2024 Jan; 254(Pt 2):127841. PubMed ID: 37924907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism.
    Cohen SI; Linse S; Luheshi LM; Hellstrand E; White DA; Rajah L; Otzen DE; Vendruscolo M; Dobson CM; Knowles TP
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9758-63. PubMed ID: 23703910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structures of the E22Δ mutant-type amyloid-β alloforms and the impact of E22Δ mutation on the structures of the wild-type amyloid-β alloforms.
    Coskuner O; Wise-Scira O; Perry G; Kitahara T
    ACS Chem Neurosci; 2013 Feb; 4(2):310-20. PubMed ID: 23421682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of Alzheimer amyloid-beta peptides with glycosaminoglycans effects on fibril nucleation and growth.
    McLaurin J; Franklin T; Zhang X; Deng J; Fraser PE
    Eur J Biochem; 1999 Dec; 266(3):1101-10. PubMed ID: 10583407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A synchrotron-based hydroxyl radical footprinting analysis of amyloid fibrils and prefibrillar intermediates with residue-specific resolution.
    Klinger AL; Kiselar J; Ilchenko S; Komatsu H; Chance MR; Axelsen PH
    Biochemistry; 2014 Dec; 53(49):7724-34. PubMed ID: 25382225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.