These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 31245660)
1. High-throughput droplet microfluidics screening platform for selecting fast-growing and high lipid-producing microalgae from a mutant library. Kim HS; Hsu SC; Han SI; Thapa HR; Guzman AR; Browne DR; Tatli M; Devarenne TP; Stern DB; Han A Plant Direct; 2017 Sep; 1(3):e00011. PubMed ID: 31245660 [TBL] [Abstract][Full Text] [Related]
2. A droplet microfluidics platform for rapid microalgal growth and oil production analysis. Kim HS; Guzman AR; Thapa HR; Devarenne TP; Han A Biotechnol Bioeng; 2016 Aug; 113(8):1691-701. PubMed ID: 26724784 [TBL] [Abstract][Full Text] [Related]
3. Raman spectroscopy compatible PDMS droplet microfluidic culture and analysis platform towards on-chip lipidomics. Kim HS; Waqued SC; Nodurft DT; Devarenne TP; Yakovlev VV; Han A Analyst; 2017 Apr; 142(7):1054-1060. PubMed ID: 28294227 [TBL] [Abstract][Full Text] [Related]
4. Digital quantification and selection of high-lipid-producing microalgae through a lateral dielectrophoresis-based microfluidic platform. Han SI; Kim HS; Han KH; Han A Lab Chip; 2019 Dec; 19(24):4128-4138. PubMed ID: 31755503 [TBL] [Abstract][Full Text] [Related]
5. A Gelatin Microdroplet Platform for High-Throughput Sorting of Hyperproducing Single-Cell-Derived Microalgal Clones. Li M; van Zee M; Riche CT; Tofig B; Gallaher SD; Merchant SS; Damoiseaux R; Goda K; Di Carlo D Small; 2018 Nov; 14(44):e1803315. PubMed ID: 30369052 [TBL] [Abstract][Full Text] [Related]
6. A microfluidic droplet array demonstrating high-throughput screening in individual lipid-producing microalgae. Zheng G; Gu F; Cui Y; Lu L; Hu X; Wang L; Wang Y Anal Chim Acta; 2022 Sep; 1227():340322. PubMed ID: 36089324 [TBL] [Abstract][Full Text] [Related]
7. Ultrahigh-throughput screening of industrial enzyme-producing strains by droplet-based microfluidic system. Yuan H; Tu R; Tong X; Lin Y; Zhang Y; Wang Q J Ind Microbiol Biotechnol; 2022 May; 49(3):. PubMed ID: 35259275 [TBL] [Abstract][Full Text] [Related]
8. An integrated microfluidic device for the high-throughput screening of microalgal cell culture conditions that induce high growth rate and lipid content. Bae S; Kim CW; Choi JS; Yang JW; Seo TS Anal Bioanal Chem; 2013 Nov; 405(29):9365-74. PubMed ID: 24170268 [TBL] [Abstract][Full Text] [Related]
9. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research. Park JW; Na SC; Nguyen TQ; Paik SM; Kang M; Hong D; Choi IS; Lee JH; Jeon NL Biotechnol Bioeng; 2015 Mar; 112(3):494-501. PubMed ID: 25220860 [TBL] [Abstract][Full Text] [Related]
10. An integrated digital microfluidic bioreactor for fully automatic screening of microalgal growth and stress-induced lipid accumulation. Wang Y; Zhao H; Liu X; Lin W; Jiang Y; Li J; Zhang Q; Zheng G Biotechnol Bioeng; 2021 Jan; 118(1):294-304. PubMed ID: 32946108 [TBL] [Abstract][Full Text] [Related]
11. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges. Banerjee C; Dubey KK; Shukla P Front Microbiol; 2016; 7():432. PubMed ID: 27065986 [TBL] [Abstract][Full Text] [Related]
12. A high-throughput microfluidic single-cell screening platform capable of selective cell extraction. Kim HS; Devarenne TP; Han A Lab Chip; 2015 Jun; 15(11):2467-75. PubMed ID: 25939721 [TBL] [Abstract][Full Text] [Related]
13. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy. Guo B; Lei C; Kobayashi H; Ito T; Yalikun Y; Jiang Y; Tanaka Y; Ozeki Y; Goda K Cytometry A; 2017 May; 91(5):494-502. PubMed ID: 28399328 [TBL] [Abstract][Full Text] [Related]
14. A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants. Terashima M; Freeman ES; Jinkerson RE; Jonikas MC Plant J; 2015 Jan; 81(1):147-59. PubMed ID: 25267488 [TBL] [Abstract][Full Text] [Related]
15. Screening of oleaginous algal strains from Chlamydomonas reinhardtii mutant libraries via density gradient centrifugation. Sung YJ; Choi HI; Lee JS; Hong ME; Sim SJ Biotechnol Bioeng; 2019 Dec; 116(12):3179-3188. PubMed ID: 31429923 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis. Kim JY; Kwak HS; Sung YJ; Choi HI; Hong ME; Lim HS; Lee JH; Lee SY; Sim SJ Sci Rep; 2016 Feb; 6():21155. PubMed ID: 26852806 [TBL] [Abstract][Full Text] [Related]
17. Molecular Genetic Tools and Emerging Synthetic Biology Strategies to Increase Cellular Oil Content in Chlamydomonas reinhardtii. Kong F; Yamaoka Y; Ohama T; Lee Y; Li-Beisson Y Plant Cell Physiol; 2019 Jun; 60(6):1184-1196. PubMed ID: 30715500 [TBL] [Abstract][Full Text] [Related]
18. Droplet-based microfluidic platform for detecting agonistic peptides that are self-secreted by yeast expressing a G-protein-coupled receptor. Asama R; Liu CJS; Tominaga M; Cheng YR; Nakamura Y; Kondo A; Wang HY; Ishii J Microb Cell Fact; 2024 Apr; 23(1):104. PubMed ID: 38594681 [TBL] [Abstract][Full Text] [Related]
19. Culturing and investigation of stress-induced lipid accumulation in microalgae using a microfluidic device. Holcomb RE; Mason LJ; Reardon KF; Cropek DM; Henry CS Anal Bioanal Chem; 2011 Apr; 400(1):245-53. PubMed ID: 21311874 [TBL] [Abstract][Full Text] [Related]
20. Enhancing microalgal lipid accumulation for biofuel production. Zhu Z; Sun J; Fa Y; Liu X; Lindblad P Front Microbiol; 2022; 13():1024441. PubMed ID: 36299727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]